QUEEN MARY, UNIVERSITY OF LONDON

MTH6102: Bayesian Statistical Methods

Practical 9 2023-2024

SOLUTIONS

1 Review

In a factory producing computer chips, on the production line chips are inspected one at a time until a defective chip is found. The probability of each chip being defective is q, where q is unknown. The number of chips inspected before the first defective one is found can be modelled using the geometric distribution with parameter q, and pmf

$$p(x|q) = (1-q)^x q, \quad x = 1, 2, \dots$$

This process is repeated n times, and the number of chips inspected before the first defective one was x_1, \ldots, x_n . Let that the observed data for n = 5 be $x_1, \ldots, x_5 = 6, 2, 7, 0, 4$.

- 1. What is the maximum likelihood estimate (MLE), \hat{q} , of q?
- 2. A beta (α, β) prior distribution is chosen for q. Before seeing the data, we would like the prior mean to be 0.2 and the standard deviation 0.1. Find the parameters of a beta distribution that satisfy this.
- 3. In R, generate a random sample of size 10,000 from the beta distribution derived as a prior in question (b), and check that the mean and standard deviation of the sample are approximately 0.2 and 0.1, respectively.
- 4. Find the posterior distribution for q under the geometric likelihood and the prior computed from (b). What is the posterior mean?
- 5. Show that the posterior mean for q is always in between the prior mean and the MLE for this example. As $n \to \infty$ show that the posterior mean tends to the MLE of q.
- 6. Use R to find the posterior median and a 95% credible interval for q.

Let $\psi = E(q^2)$, be the second moment of q.

7. Use Monte Carlo integration to approximate ψ and plot the histogram of an IID sample from ψ .

1. The likelihood is

$$p(x \mid q) = \prod_{i=1}^{n} q(1-q)^{x_i} = q^n (1-q)^{(S)}, \text{ where } S = \sum_{i=1}^{n} x_i.$$

Taking the derivative with respect to q, set it to 0, gives that the MLE for q, is

$$\hat{q} = \frac{n}{n+S} = 0.208$$

2. If we take a Beta(α , β) prior distribution for q, we derived the posterior distribution as Beta(α ₁, β ₁) with α ₁ = $n + \alpha$ and β ₁ = $S + \beta$.

For choosing the prior parameters, the mean and variance of a beta distribution are

$$m = \frac{\alpha}{\alpha + \beta}, \ v = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} = \frac{m(1 - m)}{(\alpha + \beta + 1)}$$

Rearranging gives

$$(\alpha + \beta + 1)v = m(1 - m)$$

$$\alpha + \beta = m(1 - m)/v - 1$$

$$\alpha = m(\alpha + \beta) = m(m(1 - m)/v - 1)$$

$$\beta = m(1 - m)/v - 1 - \alpha$$

Substituting $m=0.2, v=0.1^2$ gives $\alpha=3, \beta=12$ for the prior parameters.

- 3. prior_sample=rbeta(10000, shape1=alpha_prior, shape2=beta_prior)
 mean(prior_sample)
 sd(prior_sample)
- 4. The posterior density of $p(q \mid x)$ is $beta(n + \alpha, S + \beta)$. We also have n = 5 and S = 19, so the posterior distribution for q is Beta(8,31), with posterior mean $\frac{8}{39} = 0.205$.
- 5. The posterior mean is $\hat{q}_B = \frac{\alpha + n}{\alpha + \beta + n + S}$. Hence, we have

$$\hat{q}_B = \frac{\alpha + n}{\alpha + \beta + n + S} = \frac{\alpha + \beta}{\alpha + \beta + n + S} \frac{\alpha}{\alpha + \beta} + \frac{n + S}{\alpha + \beta + n + S} \frac{n}{n + S}$$
$$= w \frac{\alpha}{\alpha + \beta} + (1 - w) \frac{n}{n + S}$$

with $w = \frac{\alpha + \beta}{\alpha + \beta + n + S}$. Hence, we observe as $n \to \infty$, $w \to 0$ and $1 - w \to 1$, and $\hat{q}_B \to \frac{n}{n + S}$

- 6. The R commands for the posterior median and a 95% credible interval are
 - > alpha_prior=3
 - > beta_prior=12
 - > #posterior parameters
 - > alpha_posterior=alpha_prior+n
 - > beta_posterior=beta_prior+S