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In a factory producing computer chips, on the production line chips are inspected one at a
time until a defective chip is found. The probability of each chip being defective is q, where
q is unknown. The number of chips inspected before the first defective one is found can be
modelled using the geometric distribution with parameter q, and pmf

p(x|q) = (1− q)xq, x = 1, 2, . . .

This process is repeated n times, and the number of chips inspected before the first defective
one was x1, . . . , xn. Let that the observed data for n = 5 be x1, . . . , x5 = 6, 2, 7, 0, 4.

1. What is the maximum likelihood estimate (MLE), q̂, of q?

2. A beta(α, β) prior distribution is chosen for q. Before seeing the data, we would like
the prior mean to be 0.2 and the standard deviation 0.1. Find the parameters of a beta
distribution that satisfy this.

3. In R, generate a random sample of size 10, 000 from the beta distribution derived as a
prior in question (b), and check that the mean and standard deviation of the sample
are approximately 0.2 and 0.1, respectively.

4. Find the posterior distribution for q under the geometric likelihood and the prior com-
puted from (b). What is the posterior mean?

5. Show that the posterior mean for q is always in between the prior mean and the MLE
for this example. As n→∞ show that the posterior mean tends to the MLE of q.

6. Use R to find the posterior median and a 95% credible interval for q.

Let ψ = E(q2), be the second moment of q.

7. Use Monte Carlo integration to approximate ψ and plot the histogram of an IID sample
from ψ.
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1. The likelihood is

p(x | q) =

n∏
i=1

q(1− q)xi = qn(1− q)(S), where S =

n∑
i=1

xi.

Taking the derivative with respect to q, set it to 0, gives that the MLE for q, is

q̂ =
n

n+ S
= 0.208

2. If we take a Beta(α, β) prior distribution for q, we derived the posterior distribution as
Beta(α1, β1) with α1 = n+ α and β1 = S + β.

For choosing the prior parameters, the mean and variance of a beta distribution are

m =
α

α+ β
, v =

αβ

(α+ β)2(α+ β + 1)
=

m(1−m)

(α+ β + 1)

Rearranging gives

(α+ β + 1)v = m(1−m)

α+ β = m(1−m)/v − 1

α = m(α+ β) = m (m(1−m)/v − 1)

β = m(1−m)/v − 1− α

Substituting m = 0.2, v = 0.12 gives α = 3, β = 12 for the prior parameters.

Please don't copy and paste the code, type it in yourself. You will learn it better that way.
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