
MTH5104: Convergence and Continuity 2023–2024

Problem Sheet 6 (Continuity)

1. Prove, directly for the definition of continuity, that f(x) = 3
√
x is continuous

at a = 0.

Solution. At a = 0,

|f(x)− f(a)| = | 3
√
x− 3
√

0 | = 3
√
|x| = 3

√
|x− a|.

Given ε > 0, let δ = ε3. Then, for any x with |x−a| < δ, we have |f(x)−f(a)| =
3
√
|x− a| < 3

√
δ = ε. Thus, f is continuous at a = 0.

2. For each of the following functions, state whether they are continuous at a = 0
and prove your answers, using only the definition of continuity.

(a) f(x) =

{
2x if x ∈ Q,

−5x if x 6∈ Q,

(b) f(x) =

{
2x+ 1 if x ≥ 0,

−5x if x < 0.

Solution. This is a question from the May 2015 Exam.

(a) f(x) =

{
2x if x ∈ Q,

−5x if x 6∈ Q,
is continuous at a = 0. We have to prove

∀ε > 0 ∃δ > 0 ∀h ∈ R, |h| < δ : |f(a+ h)− f(a)| < ε.

Given ε > 0, pick δ =
ε

5
> 0. Then for any h with |h| < δ, we have

|f(a+ h)− f(a)| = |f(h)− f(0)| = |f(h)| ≤ 5|h| < 5δ = ε.

This proves the claim.

(b) f(x) =

{
2x+ 1 if x ≥ 0,

−5x if x < 0,
is not continuous at a = 0. We thus have

to prove the negation of the above quantifier statement, i.e.

∃ε > 0 ∀δ > 0 ∃h ∈ R, |h| < δ : |f(a+ h)− f(a)| ≥ ε.
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Pick ε = 1
2 . Then given δ > 0, pick h = −min{ 1

10 ,
δ
2}. This is allowed

as |h| < δ. Moreover, as h ∈ [− 1
10 , 0), we have f(h) = −5h ≤ 1

2 . On the
other hand f(0) = 1, so |f(h)− f(0)| ≥ 1

2 = ε.

3. The function f : R→ R is defined by:

f(x) =

{
0 if x 6∈ Z,
x if x ∈ Z.

Find the set P ⊆ R of points for which the function f is not continuous. Prove
your answer!

Solution. We claim that the set P of points where f is not continuous is
Z \ {0}.
Before starting the proof, let us first recall that f is continuous at a iff

∀ε > 0 ∃δ > 0 ∀h ∈ R, |h| < δ : |f(a+ h)− f(a)| < ε. (0.1)

f is not continuous at a iff the negation of (1) holds, i.e.

∃ε > 0 ∀δ > 0 ∃h ∈ R, |h| < δ : |f(a+ h)− f(a)| ≥ ε. (0.2)

(a) We first show that f is indeed not continuous at a ∈ P = Z \ {0}. So let
such an a be given. We have to prove (2). So we pick ε = 1. Then given
δ > 0, choose any h with 0 < |h| < δ. We get

|f(a+ h)− f(a)| ≥ 1 = ε.

(b) Next, we show that f is continuous on the complement of P , i.e. we want
to show (1). We first prove this for a = 0. Given ε > 0, pick δ = 1. Then
given any h with |h| < δ we have f(h) = 0 = f(0), so

|f(h)− f(0)| = 0 < ε.

Next, we let a ∈ R \ Z and show (1) again for such an a. We pick
δ = min{|a − k| : k ∈ Z}. Now given any h with |h| < δ, we have
f(a + h) = 0 (as (a − δ, a + δ) does not contain any elements of Z) and
f(a) = 0 (as a 6∈ Z). Therefore

|f(a+ h)− f(a)| = 0 < ε.

4. (a) Let f : R → R be defined by f(x) = x2 + x. Prove, directly from the
definition, that f(x) is continuous at all a ∈ R. (There is an example
in the notes that can be used as a model. Given ε, you may like to try
letting δ = min{cε, 1} for some suitably chosen constant c ∈ R.)
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(b) Let g : R→ R be defined by

g(x) =

{
x2 + x, if x is rational

0, otherwise.

The function g is continuous at two points; what are they?

(c) For one of the points a you identified in part (b), verify that g is continu-
ous at a. (This part requires very little calculation. There are two cases,
a + h ∈ Q and a + h /∈ Q. In part (a) you already did the work for the
harder one of these!)

Solution.

(a) Let a ∈ R. Given ε > 0, let δ = min{cε, 1}, following the hint. Then, for
any h with |h| < δ,

|f(a+ h)− f(a)| = |((a+ h)2 + (a+ h))− (a2 + a)|
= |2ah+ h2 + h|
≤ |2ah|+ |h2|+ |h|
< |2a|δ + δ2 + δ (since |h| < δ)

≤ |2a|δ + δ + δ (since δ ≤ 1)

≤ (|2a|+ 2)δ

≤ (|2a|+ 2)cε.

Now choose c = (|2a|+ 2)−1 and we are done.

(b) The only points where g is continuous are the roots of f , namely −1 and
0. [To see why g is not continuous elsewhere, see Example 5.4(ii).]

(c) Let’s check that g is continuous at 0. Given ε choose δ as in part (a).
Suppose |h| < δ. If h is rational then |g(0+h)−g(0)| = |f(0+h)+f(0)| < ε
as we saw in part (a). If h is irrational, then |g(0 + h)− g(0)| = |0− 0| =
0 < ε.

Remark. If we didn’t have the hint to guide us, we could do a preliminary
calculation to estimate |f(x)− f(a)| at x = a+ h:

|f(a+ h)− f(a)| = |((a+ h)2 + (a+ h))− (a2 + a)|
= |2ah+ h2 + h|
≤ |2ah|+ |h2|+ |h|

We need to choose δ so that this quantity to less than the ε > 0 given by the
Demon. We make our task easier by first insisting that δ (and hence |h|) is
less than 1. Our goal is now to make

|2ah|+ |h2|+ |h| ≤ |2a|δ + δ + δ = (|2a|+ 2)δ

3
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less than or equal to ε. This we can do by choosing δ = (|2a|+ 2)−1.

5. Prove parts (i) and (ii) of Theorem 5.14 from the lecture notes.

Solution. Recall that Theorem 5.14 states that if f : D1 → R and g : D2 →
R are two functions that are continuous at a ∈ D1 ∩ D2, and c ∈ R is a
constant, then the following hold:

(i) cf is continuous at a.

(ii) f + g is continuous at a.

(iii) f · g is continuous at a.

(iv) If g(a) 6= 0, then f
g is continuous at a.

We prove (i) and (ii) here and leave (iii) and (iv) to question 6.

(i) If c = 0, then cf is the constant function 0 which is continuous ev-
erywhere. If c 6= 0, then given ε, we can find a δ > 0 such that
|f(x) − f(a)| < ε̃ := ε

|c| for all x with |x − a| < δ. (We can do this

since f is continuous at a.) Now, |cf(x) − cf(a)| < ε for all x with
|x− a| < δ, so cf is continuous at a as required.

(ii) We must prove that for D = D1 ∩D2

∀ε > 0 ∃δ > 0 ∀x ∈ D, |x− a| < δ : |(f(x) + g(x))− (f(a) + g(a))| < ε.

But given ε > 0, we know that

∃δ1 > 0 ∀x ∈ D1, |x− a| < δ1 : |f(x)− f(a)| < ε̃ :=
ε

2

because f is continuous at a, and

∃δ2 > 0 ∀x ∈ D2, |x− a| < δ2 : |g(x)− g(a)| < ε̃ :=
ε

2

because g is continuous at a. So taking δ = min{δ1, δ2}, we obtain

∀x ∈ D, |x− a| < δ : |f(x)− f(a)| < ε

2

(from D ⊆ D1 and δ ≤ δ1) as well as

∀x ∈ D, |x− a| < δ : |g(x)− g(a)| < ε

2

(from D ⊆ D2 and δ ≤ δ2). Hence, for all x ∈ D with |x − a| < δ, we
have

|(f(x)+g(x))− (f(a)+g(a))| ≤ |f(x)−f(a)|+ |g(x)−g(a)| < ε

2
+
ε

2
= ε

by the triangle inequality. Thus f + g is continuous at a.
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6. For each of the following real functions state its natural domain of definition
D. Also determine at which points of D the function is continuous. Explain
your answers by reference to results in the course. You may assume that lnx
is defined and continuous at all points in (0,∞).

(a) f(x) = cos
( 1

x2 + 1

)
,

(b) g(x) = ln(lnx), and

(c) h(x) =

√
x

x2 + 1
.

Solution. (Below, “continuous” will mean “defined and continuous”.)

(a) The function f is continuous on the whole of R.

The numerator and denominator of the quotient are polynomials and
hence are continuous on the whole of R. The denominator always strictly
positive, so 1/(x2 + 1) is continuous on R by Theorem 5.14(iv). Cosine is
continuous on R, and so is f(x) by Theorem 5.17.

(b) The function g is continuous on the whole of (1,∞).

The outer logarithm will be defined iff ln(x) > 0. This in turn will occur
iff x > 1. So the function g is defined on (1,∞) (and not elsewhere). By
Theorem 5.17, the function g is also continuous on (1,∞), since ln(x) is
continuous at all points in its domain.

(c) The function is continuous on [0,∞).

As in (a), the quotient is continuous on R. However, when x < 0 the
quotient is negative, and the square root is not defined. So the natural
domain of the function is [0,∞). Square root is continuous on [0,∞)
(result from the module), and so is h(x) by Theorem 5.17.

7. Consider the function f(x) =
√
x defined on D = [0,∞). Prove, directly from

the definition of continuity, that f(x) is continuous on D. (First, try showing
that |

√
x−
√
a |2 ≤ |x− a|.)

Solution. Following the hint, note that

|
√
x−
√
a |2 ≤ |

√
x−
√
a | × |

√
x+
√
a | = |(

√
x−
√
a)(
√
x+
√
a)| = |x− a|.

This suggests that to achieve |
√
x−
√
a | < ε it is enough to have |x− a| < ε2.

So given ε > 0, set δ = ε2. Then for all x ∈ [0,∞) with |x − a| < δ we have
|f(x)−f(a)| = |

√
x−
√
a | ≤

√
|x− a| (by the hint) and hence |f(x)−f(a) | <√

δ =
√
ε2 = ε.

8. Challenge. Prove parts (iii) and (iv) of Theorem 5.14 from the lecture notes.
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Solution. We continue from Question 2.

(iii) This part is more tricky. Similar to the prove of the corresponding result
for convergent sequences, the idea is to write

f(x)g(x)− f(a)g(a) = (f(x)− f(a))(g(x)− g(a))

+ f(a)(g(x)− g(a)) + g(a)(f(x)− f(a)).

and then choose δ such that the modulus of each of the 3 terms is < ε
3

for all x with |x− a| < δ. So if you couldn’t solve this, try it again with
this idea in mind! What follows is a detailed argument.

We have to show that the following statement is true:

∀ε > 0 ∃δ > 0 ∀x ∈ D1 ∩D2, |x− a| < δ : |f(x) · g(x)− f(a) · g(a)| < ε.

So given any ε > 0, to ensure that the modulus of the left hand side of
this equation is less than ε it will suffice to ensure that:

• |(f(x)− f(a))(g(x)− g(a))| < ε/3,

• |f(a)(g(x)− g(a))| < ε/3, and

• |g(a)(f(x)− f(a))| < ε/3.

Since f and g are continuous at a we can choose δ1 such that for all
x ∈ D1 with |x−a| < δ1 we have |f(x)−f(a)| <

√
ε/3 and we can choose

δ2 such that for all x ∈ D2 with |x−a| < δ2 we have |g(x)−g(a)| <
√
ε/3.

Moreover, if f(a) 6= 0 we can choose δ3 such that if x ∈ D2 with

|x − a| < δ3 then |g(x) − g(a)| < ε

3|f(a)|
– and if f(a) = 0 we can

choose any value of δ3, for example δ3 = 1.

Similarly, if g(a) 6= 0 we can choose δ4 such that if x ∈ D1 with |x−a| < δ4

then |f(x) − f(a)| < ε

3|g(a)|
– and if g(a) = 0 we can choose any value

of δ4, for example δ4 = 1.

Thus, finally, if we set δ = min{δ1, δ2, δ3, δ4} then for every x ∈ D1 ∩D2

such that |x− a| < δ we have

|(f(x)−f(a))(g(x)−g(a))| + |f(a)(g(x)−g(a))| + |g(a)(f(x)−f(a))|
< ε/3 + ε/3 + ε/3 = ε.

So the claim follows by the triangle inequality.

(iv) This statement follows similarly to iii). One can also use that h(x) = 1
x is

continuous away from zero and thus for continuous g(x) we have 1
g(x) =

h(g(x)) is continuous as long as g(x) 6= 0. Then using iii), we conclude
that f

g is continuous. Details can be found in every textbook on the topic.

6
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9. Let f : R→ R be the function

f(x) =

{
0 if x 6∈ Q or if x = 0,

1/q if x ∈ Q and x = p/q in lowest terms, with p > 0.

(a) Suppose that a ∈ Q. Prove that f is not continuous at a.

(b) Suppose that a /∈ Q. Prove that f is continuous at a [harder].

Solution. Let f : R→ R be the function

f(x) =

{
0 if x 6∈ Q or if x = 0,

1/q if x ∈ Q and x = p
q in lowest terms, with p > 0,

(a) Let a ∈ Q. We claim that f is not continuous at a.

Proof. We pick ε = |f(a)| = |1/q|. Then given δ > 0 we pick an irrational
x ∈ (a − δ, a + δ) (which we can do as irrational numbers are dense by
Corollary 1.15). Then

|f(x)− f(a)| = |0− f(a)| = |f(a)| ≥ ε.

(b) Let a 6∈ Q. We claim that f is continuous at a. [This is harder than
anything that would be asked in the exam, so a solution is only briefly
outlined here.]

Proof. Given ε > 0, choose a natural number q′ such that 1/q′ < ε. For
example, for definiteness we could take q′ = d1/εe. There are only finitely
many rational numbers of the form p/q which have |a−p/q| < 1 and also
have q < q′. Let z be the closest such rational number to a.

Pick δ = |z − a| and note that δ > 0 as z 6= a, since a is irrational and z
is rational. Then given any x with |x− a| < δ, we have two possibilities:

i. If x is irrational then

|f(x)− f(a)| = |0− 0| = 0 < ε.

ii. If x is rational, say x = p/q then we know q must be greater or
equal to q′ since we chose z to be the closest rational to a which has
denominator less than q, and |x− a| < δ = |z − a|. Hence

|f(x)− f(a)| = |1/q − 0| = 1/q ≤ 1/q′ < ε.

In either case |f(x)− f(a)| < ε so f is continuous at a.

7
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10. Using the intermediate value theorem, show that the following equations have
a solution x ∈ R:

(a) x5 + 2x2 = 1.

(b) x4 + 1 = 9x.

(c) x cos(x) + x2 = 1.

In all cases, move all terms onto the left-hand side to get an equation of the
form f(x) = 0. Then prove that the function f(x) is continuous. Finally, find
a, b ∈ R such that f(a) < 0 and f(b) > 0. The Intermediate Value Theorem
then says that there exists a real number c in between a and b such that
f(c) = 0.

11. Find a continuous map of the open interval (0, 1) ⊂ R to itself which has no
fixed point in (0, 1). This shows that the analogue of the Brouwer Fixed Point
Theorem for open intervals is not true.

Solution. We aim to find a continuous map of the open interval (0, 1) ⊂ R
to itself which has no fixed point. We claim that f(x) = (x + 1)/2 is such a
map.

Proof. f is obviously continuous (since it is the sum of x→ x/2 and x→ 1/2,
which are continuous), and f maps the open interval (0, 1) to the open interval
(1/2, 1) ⊂ (0, 1).

Moreover, since the unique solution in R to the equation (x + 1)/2 = x is
x = 1, the map f has no fixed point in the open interval (0, 1).

12. Let f : [0, 1] → R be a continuous function which has the property that
f(0) = f(1). Let g : [0, 1/2] → R be defined by g(x) = f(x + 1/2) − f(x).
Show that g(0) + g(1/2) = 0. By applying the Intermediate Value Theorem to
g, prove that there exists a real number c ∈ [0, 1/2] such that f(c+1/2) = f(c).

Solution. Let f : [0, 1]→ R be a continuous function which has the property
that f(0) = f(1). Let g : [0, 1/2]→ R be defined by g(x) = f(x+ 1/2)− f(x).
We claim that g(0) + g(1/2) = 0.

Proof. From the definition of g we have g(0) + g(1/2) = f(1/2) − f(0) +
f(1)− f(1/2) = f(1)− f(0) = 0.

Then we claim that there exists a real number c ∈ [0, 1/2] such that f(c+1/2) =
f(c).

8
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Proof. First observe that g is continuous (since it is a sum of continuous func-
tions). As g(0) + g(1/2) = 0, there are three possibilities:

(a) g(0) = 0. In this case f(0 + 1/2)− f(0) = 0 so f(0 + 1/2) = f(0).

(b) g(0) < 0 and g(1/2) > 0. Then by the Intermediate Value Theorem there
exists c ∈ [0, 1/2] such that g(c) = 0 and hence f(c+ 1/2) = f(c).

(c) g(0) > 0 and g(1/2) < 0. Then again by the IVT there exists c ∈ [0, 1/2]
such that g(c) = 0 and hence f(c+ 1/2) = f(c).

COMMENT. As f(0) = f(1) the function f induces a continuous map from
the unit circle S1 (the interval [0, 1] with its ends glued together) to R. So this
exercise implies that given any continuous map from the unit circle to R there
exists a pair of opposite points on the circle which map to the same point of R.
This is the simplest case of the Borsuk-Ulam Theorem, which is true in every
dimension. The 2-dimensional case tells us that given any continuous map
from the 2-sphere (e.g. the earth’s surface) to the plane R2, there is always at
least one pair of opposite points on S2 which map to the same point. Thus,
for example, at every moment there is always at least one pair of opposite
points on the earth’s surface which have the same temperature and the same
atmospheric pressure.

13. Suppose that f : [0, 1] → R and that (xn)∞n=1 is the sequence of all rationals
ordered by increasing denominator

0, 1,
1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
, . . .

and that f(xn) = n. Why do we know, without doing any calculation that
f is not continuous? (This question does not ask for a precise proof, just an
explanation.)

Solution. Suppose that f : [0, 1] → R and that (xn)∞n=1 is the sequence of
rationals

0, 1,
1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
, . . .

and that f(xn) = n. We claim that f is not continuous.

Proof. Suppose it were continuous (we aim for a contradiction). Then, by the
Bolzano-Weierstrass Theorem, the sequence (xn)∞n=1 has a converging subse-
quence (xrn)∞n=1 with xrn → x ∈ [0, 1]. Now, since f is continuous at x, we
obtain that f(xrn) → f(x) ∈ R, but we have that f(xrn) = rn tends to in-
finity. This is the desired contradiction. Actually this shows that f cannot
be continuous at any point, since every point x ∈ [0, 1] is the limit of some
subsequence of (xn)∞n=1.

9
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Remark. Another way of solving this question is by using the boundedness
principle, which says that a continuous function on a closed bounded interval
(such as [0, 1]) has be bounded. Obviously the function f is not bounded above
and hence cannot be continuous.

14. In this question, be sure to check that all the conditions of the Intermediate
Value Theorem hold.

(a) Prove that, for every c ∈ [0,∞), the equation xex = c has a solution.

(b) Suppose f : R→ R is a continuous function that is bounded, i.e, |f(x)| ≤
M for all x ∈ R. Prove that the function f(x) has a fixed point in R.

Solution.

(a) Consider the function g(x) = xex − c. Note that xex is continuous on R
as it is the product of two continuous functions. Also, g(x) is continuous,
being the difference of two continuous functions.

Now, g(0) = 0 − c ≤ 0 and g(c) = cec − c = c(ec − 1) ≥ 0. So, by the
IVT, g(x) = 0 for some x ∈ [0, c]. This x satisfies xex = c.

(b) Let g(x) = f(x) − x. Since f(x) and the identity function are both
continuous, we know that g is continuous. Note that g(−M) = f(−M) +
M ≥ 0 and g(M) = f(M) −M ≤ 0. So, by the IVT, g(x) = 0 for some
x ∈ [−M,M ]. It follows that f has a fixed point in the same interval.

15. Suppose that f : R→ R is given by

f(x) =

{
x− 1 if x ∈ Q,
x+ 1 if x 6∈ Q.

(a) What does the sequence (xn)∞n=1 given by xn = n−
√
2

n converge to?

(b) Does the sequence (f(xn))∞n=1 converge? If so what does it converge to?

(c) Is f continuous at the point a = 1? (Give a brief justification.)

Solution.

(a) Obviously limn→∞ xn = 1, by Theorem 3.24, since xn = 1−
√

2/n.

(b) First, every xn is irrational since
√

2 is irrational. Hence f(xn) = xn+1 =
2−
√

2/n (since xn is irrational we are in the second case in the definition
of f). This converges to 2.

10
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(c) We prove f is not continuous by contradiction. Suppose f is continuous
then by Theorem 5.19 f(xn) → f(1) since xn → 1. But f(xn) → 2 6=
f(1) = 0. Hence f is not continuous.

16. Challenge. Let f : R→ R be a function. Recall from Definition 5.22 that we
say that limx→a f(x) exists and is equal to ` iff

∀ε > 0 ∃δ > 0 ∀h ∈ R, 0 < |h| < δ : |f(a+ h)− `| < ε. (?)

(a) Show that limx→a f(x) = ` (according to the above definition) if and only
if for every sequence (xn)∞n=1 which satisfies xn 6= a for all n as well as
xn → a for n→∞, we get f(xn)→ ` as n→∞.

(b) Show that f is continuous at a (according to our Definition 5.1) if and
only if limx→a f(x) exists and is equal to f(a).

Solution.

(a) We first prove that if limx→a = ` (i.e. statement (?) holds), then every
sequence (xn) with xn 6= a and xn → a satisfies f(xn)→ `, i.e.

∀ε > 0 ∃N ∈ N ∀n > N : |f(xn)− `| < ε. (??)

So given ε > 0, by (?) we know that there exists δ > 0 such that

∀h ∈ R, 0 < |h| < δ : |f(a+ h)− `| < ε.

But as xn → a, we also know that for this δ > 0, there exists N ∈ N
such that ∀n > N : |xn − a| < δ. We pick exactly this N . Then for all
n > N , we have 0 < |xn − a| < δ and thus (with h = xn − a)

|f(a+ h)− `| = |f(xn)− `| < ε.

Next, we want to prove the other direction, namely that if (??) holds for
all sequences (xn) with xn 6= a and xn → a, then also (?) must be true.
We prove this by contradiction. We assume (towards a contradiction)
that (?) is false, i.e. there exists an ε > 0 such that

∀δ > 0 ∃h ∈ R, 0 < |h| < δ : |f(a+ h)− `| ≥ ε.

In particular, for this ε > 0 and δn = 1
n , we know that there exists hn ∈ R

with 0 < |hn| < 1
n such that |f(a+ hn)− `| ≥ ε. We set xn = a+ hn. As

|hn| > 0, we see that xn 6= a for all n ∈ N and as |hn| < 1
n (and therefore

hn → 0), we see that xn → a. So (xn) is a sequence which must satisfy
(??). But on the other hand by construction it satisfies |f(xn) − `| ≥ ε
for all n, which is the desired contradiction.
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(b) If f is continuous then for any sequence xn → a, we know by Theorem
5.19 that f(xn) → f(a). Thus (??) is true (with ` = f(a) and hence by
part (a), we conclude that limx→a f(x) converges and equals ` = f(a).

Conversely, if limx→a f(x) converges and equals ` = f(a), then (?) yields

∀ε > 0 ∃δ > 0 ∀h ∈ R, 0 < |h| < δ : |f(a+ h)− f(a)| < ε.

As the statement obviously also holds for h = 0, we find

∀ε > 0 ∃δ > 0 ∀h ∈ R, |h| < δ : |f(a+ h)− f(a)| < ε,

which is the definition of f being continuous at a.
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