QUEEN MARY, UNIVERSITY OF LONDON
 MTH6102: Bayesian Statistical Methods

Solutions of exercise sheet 10
2023-2024

This exercise sheet 10 is assessed and counts for 4% of the module total. The deadline for submission is Monday the 11th December at 11am.

Submit the R code used as an R script file (with extension .R). But you need to write the answers in a separate file. This can be a Word document, pdf or a clearly legible image of hand-written work. So you need to submit two files.

1. $\mathbf{5 0}$ marks. Let the observed data be $y=(6,4,9,2,0,3)$, a random sample from the Poisson distribution with mean λ, where $\lambda>0$ is unknown. Suppose that we assume a $\operatorname{Gamma}(1,1)$ prior distribution for λ. The posterior density, $p(\lambda \mid y)$, for λ is Gamma($1+$ $S, 1+n$), where $S=\sum_{i=1}^{6} y_{i}$ and $n=6$. Suppose that you want to construct a symmetric Metropolis-Hastings on the log-scale to generate a sample from this posterior distribution by using a normal proposal distribution with standard deviation $b=0.2$.
(a) Write down the steps in this symmetric Metropolis-Hastings (on the log-scale) to simulate realisations from the posterior density $p(\lambda \mid y)$.
(b) Implement the algorithm in R and plot the observations as a function of the iterations. Use $M=5000$ for the number of iterations.
(c) To assess the accuracy compare the empirical distribution of the sample with the exact posterior density, $\operatorname{Gamma}(1+S, 1+n)$.
(d) Rerun the algorithm in R using a smaller $b=0.01$ and a larger $b=20$. What are the effects on the behaviour of the algorithm of making b smaller? What are the effects of making it larger?
(e) Add code to count how many times the proposed value for λ was accepted. Rerun the algorithm using values of $b=0.01, b=0.2$ and $b=20$, and each time calculate the proportion of steps that were accepted. Then plot this acceptance probability against b. Examine how the acceptance probability for this algorithm depends b.

Solution:

(a) The observed data is $y=\left(y_{1}, \ldots, y_{n}\right)=(6,4,9,2,0,3)$ where $n=6$, and each $y_{i} \sim \operatorname{Poisson}(\lambda)$ with pmf

$$
p\left(y_{i} \mid \lambda\right)=\frac{\lambda^{y_{i}} e^{-\lambda}}{y_{i}!}
$$

The log likelihood is

$$
\log p(y \mid \lambda)=\log \prod_{i=1}^{6} p\left(y_{i} \mid \lambda\right)=\sum_{i=1}^{6} \log p\left(y_{i} \mid \lambda\right)
$$

The prior for $\lambda, p(\lambda)$, is $\operatorname{Gamma}(1,1)$ with $\operatorname{pdf} p(\lambda)=e^{-\lambda}, \lambda>0$.
Define

$$
\mathcal{L}(\lambda)=\log (p(\lambda) p(y \mid \lambda))=\log (p(\lambda))+\log (p(y \mid \lambda))
$$

the \log of the posterior density (up to a constant).

Start with λ_{1} randomly. For each $i>1$:
i. Generate $\psi \sim N\left(\lambda_{i-1}, b^{2}\right)$, for $b=0.2$.
ii. Compute the probability of acceptance

$$
\delta=\min \left(0, \mathcal{L}(\psi)-\mathcal{L}\left(\lambda_{i-1}\right)\right)
$$

iii. Generate $U \sim U[0,1]$. Set

$$
\lambda_{i}= \begin{cases}\psi, & \text { if } \log (U)<\delta \\ \lambda_{i-1}, & \text { otherwise }\end{cases}
$$

(b) The chain moves up and down quickly through the parameter space.

Figure 1: Sample paths when $b=0.2$
(c) From Figure 2 the empirical distribution of the simulated values is very close to the true posterior distribution for λ
(d) In this question we examine the choices $b=0.01$ and $b=20$. Figure 3 shows the sample paths of a single run of the corresponding symmetric Metropolis-Hastings under two different proposal standard deviations b. Table 1 shows the probability of acceptance. Choosing b too small yields, a very high probability of acceptance, however at the price of a chain that is hardly moving. Choosing b too large allows the chain to move fast and make large jumps, however, most of the proposed values are rejected, so the chain remains for a long time at each accepted values. We also see that $b=0.2$ is not the optimal choice as the probability of acceptance is very high (0.80). Theoretically, it has been shown that the optimal acceptance rate is around $0.234-($ an asymptotic result). But experience suggests that an acceptance rate of around $20 \%-30 \%$. Thus, the standard deviation b should be tuned to get an acceptance rate of around this level.
(e)

Figure 2: Empirical distribution of the chain vs true Gamma posterior distribution when $b=0.2$

Figure 3: Markov chains under two different proposal standard deviations b. Going from left to right, the values of b are 0.01 and 20 , respectively.

	Probability of acceptance
$b=0.01$	0.9448
$b=0.2$	0.7972
$b=20$	0.1856

2. $\mathbf{5 0}$ marks. Let y_{1}, \ldots, y_{n} be a sample from a Poisson distribution with mean λ, where λ is given a $\operatorname{Gamma}(\alpha, \beta)$ prior distribution.
(a) It is observed that $y_{1}=y_{2}=\cdots=y_{n}=0$, and we take $\alpha=1, \beta=1$.
i. What is the posterior distribution for λ ?
ii. What is the posterior mean?
iii. What is the posterior median and an equal tail 95% credible interval for λ (without using R)?
(b) Show that if a new data-point x is generated from the same Poisson distribution,

Figure 4: Plot of acceptance probability as a function of the proposal standard deviation b.
the posterior predictive probability that $x=0$ is

$$
p(x=0 \mid y)=\frac{n+1}{n+2} .
$$

(c) Now suppose that we have general $y_{1}, \ldots, y_{n}, \alpha$ and β; and that again x is a new data-point from the same Poisson distribution.
i. Find the mean and variance of x.
ii. Derive the full posterior predictive distribution for x.

Solution:

(a) For general $y_{1}, \ldots, y_{n}, \alpha$ and β, the posterior distribution is

$$
\lambda \sim \operatorname{Gamma}(S+\alpha, n+\beta), S=\sum_{i=1}^{n} y_{i}
$$

i. If $S=0$ and $\alpha=1, \beta=1$, the posterior distribution is $\operatorname{Gamma}(1, n+1)$ with pdf

$$
p(\lambda \mid y)=(n+1) e^{-(n+1) \lambda}, \lambda \geq 0 .
$$

ii. The posterior mean is

$$
E(\lambda \mid y)=\frac{1}{n+1} .
$$

iii. The posterior pdf is

$$
p(\lambda \mid y)=(n+1) e^{-(n+1) \lambda}, \lambda \geq 0
$$

Integrating this gives cdf

$$
F(\lambda)=\int_{0}^{\lambda}(n+1) e^{-(n+1) \lambda^{\prime}} d \lambda^{\prime}=1-e^{-(n+1) \lambda}
$$

The inverse cdf function (quantile function) is $Q(u)$, found by setting $F(\lambda)=u$.

$$
1-e^{-(n+1) \lambda}=u
$$

$$
\begin{gathered}
e^{-(n+1) \lambda}=1-u \\
-(n+1) \lambda=\log (1-u) \\
Q(u)=\lambda=-\frac{\log (1-u)}{n+1}
\end{gathered}
$$

The posterior median is $Q(0.5)=-\frac{\log (0.5)}{n+1}$.
The limits for a 95% credible interval are given by

$$
(Q(0.025), Q(0.975))=\left(-\frac{\log (0.975)}{n+1},-\frac{\log (0.025)}{n+1}\right)
$$

(b) For a given value of λ, the probability that a new data-point x is zero is the Poisson probability mass function

$$
P(x=0 \mid \lambda)=e^{-\lambda}
$$

The posterior predictive probability that x is zero is

$$
\begin{aligned}
P(x=0 \mid y) & =\int_{0}^{\infty} P(x=0 \mid \lambda) p(\lambda \mid y) d \lambda \\
& =\int_{0}^{\infty} e^{-\lambda}(n+1) e^{-(n+1) \lambda} d \lambda \\
& =\int_{0}^{\infty}(n+1) e^{-(n+2) \lambda} d \lambda \\
& =\frac{n+1}{n+2}
\end{aligned}
$$

(c) The general posterior distribution for λ is $\operatorname{Gamma}(a, b)$, where $a=S+\alpha$ and $b=n+\beta$.
i. For a given value of λ, if a new data-point $x \sim \operatorname{Poisson}(\lambda)$, independently of y, then

$$
E(x \mid \lambda, y)=E(x \mid \lambda)=\lambda, \operatorname{Var}(x \mid \lambda, y)=\operatorname{Var}(x \mid \lambda)=\lambda
$$

Putting these together and by the law of iterated expectation, the predictive mean for x is

$$
E(E(x \mid \lambda, y))=E(\lambda)=\frac{\alpha}{\beta}
$$

So $E(x)=\frac{\alpha}{\beta}$. By the law of total variance,

$$
E(\operatorname{Var}(x \mid \lambda, y))+\operatorname{Var}(E(x \mid \lambda, y))=E(\lambda)+\operatorname{Var}(\lambda)=\frac{\alpha}{\beta}+\frac{\alpha}{\beta^{2}}
$$

so $\operatorname{var}(x)=\frac{\alpha}{\beta}+\frac{\alpha}{\beta^{2}}$
ii. The posterior predictive distribution is

$$
\begin{aligned}
p(x \mid y) & =\int_{0}^{\infty} p(x \mid \lambda) p(\lambda \mid y) d \lambda \\
& =\int_{0}^{\infty} \frac{\lambda^{x} e^{-\lambda}}{x!} \frac{b^{a} \lambda^{a-1} e^{-b \lambda}}{\Gamma(a)} d \lambda \\
& =\frac{b^{a}}{x!\Gamma(a)} \int_{0}^{\infty} \lambda^{a+x-1} e^{-(b+1) \lambda} d \lambda
\end{aligned}
$$

For a $\operatorname{Gamma}(a, b)$ density, we know

$$
1=\int_{0}^{\infty} \frac{b^{a}}{\Gamma(a)} \theta^{a-1} e^{-b \theta} d \theta, \quad a>0, b>0 .
$$

This means

$$
\int_{0}^{\infty} \theta^{a-1} e^{-b \theta} d \theta=\frac{\Gamma(a)}{b^{a}}, \quad a>0, b>0 .
$$

Now substitute $a+x=\alpha+S+x$ instead of a and $1+b=\beta+n+1$ instead of b to get

$$
\int_{0}^{\infty} \lambda^{a+x-1} e^{-(b+1) \lambda} d \lambda=\frac{\Gamma(\alpha+S+x)}{(\beta+1+n)^{\alpha+S+x}} .
$$

Then,

$$
p(x \mid y)=\frac{(\beta+n)^{S+\alpha}}{x!\Gamma(S+\alpha)} \frac{\Gamma(\alpha+S+x)}{(\beta+1+n)^{\alpha+S+x}}
$$

iii. R code to check the part (a) is on QMPlus.

```
> alpha = 1
> beta = 1
> S = 0
n = 11
> a = S + alpha
> b = n + beta
>
> qgamma(0.5, shape=a, rate=b)
[1] 0.05776227
> -log(0.5)/(n+1)
[1] 0.05776227
>
> qgamma(0.025, shape=a, rate=b)
[1] 0.002109817
> qgamma(0.975, shape=a, rate=b)
[1] 0.3074066
> - log(0.975)/(n+1)
[1] 0.002109817
> - log(0.025)/(n+1)
[1] 0.3074066
```

