QUEEN MARY, UNIVERSITY OF LONDON

MTHG6102: Bayesian Statistical Methods

Solutions of exercise sheet 10

2023-2024

This exercise sheet 10 is assessed and counts for 4% of the module total. The deadline for
submission is Monday the 11th December at 11am.

Submit the R code used as an R script file (with extension .R). But you need to write the
answers in a separate file. This can be a Word document, pdf or a clearly legible image of
hand-written work. So you need to submit two files.

1. 50 marks. Let the observed data be y = (6,4,9,2,0,3), a random sample from the
Poisson distribution with mean A, where A > 0 is unknown. Suppose that we assume a
Gamma(1, 1) prior distribution for . The posterior density, p(A | y), for A is Gamma(1+
S,1+ n), where S = >° 'y, and n = 6. Suppose that you want to construct a
symmetric Metropolis-Hastings on the log-scale to generate a sample from this posterior
distribution by using a normal proposal distribution with standard deviation b = 0.2.

(a)

Write down the steps in this symmetric Metropolis-Hastings (on the log-scale) to
simulate realisations from the posterior density p(\ | y).

Implement the algorithm in R and plot the observations as a function of the iter-
ations. Use M = 5000 for the number of iterations.

To assess the accuracy compare the empirical distribution of the sample with the
exact posterior density, Gamma(1l + S, 1+ n).

Rerun the algorithm in R using a smaller b = 0.01 and a larger b = 20. What are
the effects on the behaviour of the algorithm of making b smaller? What are the
effects of making it larger?

Add code to count how many times the proposed value for A\ was accepted. Rerun
the algorithm using values of b = 0.01, b = 0.2 and b = 20, and each time calculate
the proportion of steps that were accepted. Then plot this acceptance probability
against b. Examine how the acceptance probability for this algorithm depends b.

Solution:

(a)

The observed data is ¥y = (y1,...,%,) = (6,4,9,2,0,3) where n = 6, and each
y; ~ Poisson(\) with pmf

Avie™>

i

The log likelihood is

6 6
logp(y | A) =log [ [ p(y: [ A) = logp(y. | A).
i=1 i=1



(b)

(c)
(d)

The prior for A, p(A), is Gamma(1, 1) with pdf p(A\) = e, A > 0.
Define

L(A) =log (p(A) p(y | A)) = log (p(A)) +1og (p(y | A)),
the log of the posterior density (up to a constant).

Start with A; randomly. For each ¢ > 1:

i. Generate ¥ ~ N(\;_1,b%), for b =0.2.
ii. Compute the probability of acceptance

0 =min (0, L(¢)) — L(N\i—1)) .
iii. Generate U ~ U|[0, 1]. Set
N = Y, if log(U) < ¢
L Ai_1, otherwise

The chain moves up and down quickly through the parameter space.
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Figure 1: Sample paths when b = 0.2

From Figure 2 the empirical distribution of the simulated values is very close to
the true posterior distribution for A

In this question we examine the choices b = 0.01 and b = 20. Figure 3 shows the
sample paths of a single run of the corresponding symmetric Metropolis-Hastings
under two different proposal standard deviations b. Table 1 shows the probability
of acceptance. Choosing b too small yields, a very high probability of acceptance,
however at the price of a chain that is hardly moving. Choosing b too large allows
the chain to move fast and make large jumps, however, most of the proposed values
are rejected, so the chain remains for a long time at each accepted values. We also
see that b = 0.2 is not the optimal choice as the probability of acceptance is very
high (0.80). Theoretically, it has been shown that the optimal acceptance rate is
around 0.234-(an asymptotic result). But experience suggests that an acceptance
rate of around 20%-30%. Thus, the standard deviation b should be tuned to get
an acceptance rate of around this level.
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Figure 2: Empirical distribution of the chain vs true Gamma posterior distribution when

b=0.2
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Figure 3: Markov chains under two different proposal standard deviations b. Going from left
to right, the values of b are 0.01 and 20, respectively.

Probability of acceptance
b=0.01 | 0.9448
b=0.2 | 0.7972
b= 20 0.1856
2. 50 marks. Let y1,...,y, be a sample from a Poisson distribution with mean A, where

A is given a Gamma(q, 3) prior distribution.

(a) It is observed that y; = yo =--- =y, = 0, and we take a = 1,3 = 1.

i. What is the posterior distribution for \?
ii. What is the posterior mean?

iii. What is the posterior median and an equal tail 95% credible interval for A

(without using R)?

(b) Show that if a new data-point x is generated from the same Poisson distribution,
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Figure 4: Plot of acceptance probability as a function of the proposal standard deviation b.

the posterior predictive probability that x = 0 is

n+1
=0 = .
plx=0]y) = ——
(c) Now suppose that we have general y1,...,y,, @ and ; and that again z is a new

data-point from the same Poisson distribution.
i. Find the mean and variance of x.

ii. Derive the full posterior predictive distribution for .
Solution:

(a) For general y1,...,yn, @ and (3, the posterior distribution is

n
A~ Gamma(S + a,n+ ), S = Zyz
i=1
i. If S=0and a =1, = 1, the posterior distribution is Gamma(1l,n + 1) with
pdf
PO\ 9) = (n+ D)e ™A x>0,
ii. The posterior mean is
1
n+1

E(X]y) =
iii. The posterior pdf is
pA | y) = (n+1)e” DA\ > 0.

Integrating this gives cdf
A
F()\) — / (n 4 1)67(n+1)/\’ AN =1 — 67("+1))‘,
0

The inverse cdf function (quantile function) is Q(u), found by setting F'(A) = u.

1_ e—(n-l—l))\ —u



e—(n—i—l))\ —1—u

—(n+ )X =log(l —u)

log(1 — u)
= )\ e ———
Q) n+1
1 .
The posterior median is Q(0.5) = —M.
n+1

The limits for a 95% credible interval are given by

_ log(0.975) _10g(0.025)>

(Q(0.025), Q(0.975)) = ( 1 a1

(b) For a given value of A, the probability that a new data-point z is zero is the Poisson
probability mass function
Plz=0])\)=¢"

The posterior predictive probability that x is zero is
Pla=01u)= [ Pl=01A)p(x|5)
= / e (n+1)e DA gy
0

o0
= / (n+ 1) e”™F2X gx
0

n—+1
n+2

(c) The general posterior distribution for A is Gamma(a,b), where a = S + a and
b=n+p5.
i. For a given value of )\, if a new data-point x ~ Poisson(\), independently of
y, then

E(x|Ay)=FE(x]|\) =X\, Var(z | \,y) = Var(z | \) = A

Putting these together and by the law of iterated expectation, the predictive
mean for z is

E(E(z | A y)) = EQA) =

)

|2

So E(z) = 5. By the law of total variance,

B(Var(a | A,y)) + Var(E(w | Ag)) = B + Var(h) = § + 5.

so var(z) = + 4
ii. The posterior predictive distribution is

p<x1y>:/0°°p<m>p<xwy> dx

00 \T - paya—1_,—bA
_/ e " bP\ e QA
0 x! I'(a)

/OO )\a+x7167(b+1))\ d\
0




iii.

For a Gamma(a, b) density, we know

oo ba
1= 0* e tdh b .
A I'(a) e , a>0,b>0

This means

*° I
/ 0 e dh = IES)’ a>0,b>0.
0

Now substitute a + * = o + S + x instead of a and 1 4+ b=+ n + 1 instead
of b to get

/oo )\a,-i—m—le—(b'i'l))\ A\ — F(Oé + S+ 113') ‘
0 (B+ 14 n)ws

Then,

(B+mn)5*> T(a+S+z)
zIT(S + ) (B+ 1+ n)atste’

p(x|y) =

R code to check the part (a) is on QMPlus.

alpha =1
beta = 1

S =0

11

S + alpha
n + beta

n
a
b

V V V V V V V V

qgamma (0.5, shape=a, rate=b)
[1] 0.05776227

> -1og(0.5)/(n+1)

[1] 0.05776227

>

> ggamma (0.025, shape=a, rate=b)
[1] 0.002109817

> ggamma (0.975, shape=a, rate=b)
[1] 0.3074066

> -10g(0.975)/ (n+1)

(1] 0.002109817

> -10g(0.025)/(n+1)

[1] 0.3074066



