
QUEEN MARY, UNIVERSITY OF LONDON
MTH6102: Bayesian Statistical Methods

Solutions of exercise sheet 10

2023-2024

This exercise sheet 10 is assessed and counts for 4% of the module total. The deadline for
submission is Monday the 11th December at 11am.

Submit the R code used as an R script file (with extension .R). But you need to write the
answers in a separate file. This can be a Word document, pdf or a clearly legible image of
hand-written work. So you need to submit two files.

1. 50 marks. Let the observed data be y = (6, 4, 9, 2, 0, 3), a random sample from the
Poisson distribution with mean λ, where λ > 0 is unknown. Suppose that we assume a
Gamma(1, 1) prior distribution for λ. The posterior density, p(λ | y), for λ is Gamma(1+
S, 1 + n), where S =

∑
6

i=1
yi and n = 6. Suppose that you want to construct a

symmetric Metropolis-Hastings on the log-scale to generate a sample from this posterior
distribution by using a normal proposal distribution with standard deviation b = 0.2.

(a) Write down the steps in this symmetric Metropolis-Hastings (on the log-scale) to
simulate realisations from the posterior density p(λ | y).

(b) Implement the algorithm in R and plot the observations as a function of the iter-
ations. Use M = 5000 for the number of iterations.

(c) To assess the accuracy compare the empirical distribution of the sample with the
exact posterior density, Gamma(1 + S, 1 + n).

(d) Rerun the algorithm in R using a smaller b = 0.01 and a larger b = 20. What are
the effects on the behaviour of the algorithm of making b smaller? What are the
effects of making it larger?

(e) Add code to count how many times the proposed value for λ was accepted. Rerun
the algorithm using values of b = 0.01, b = 0.2 and b = 20, and each time calculate
the proportion of steps that were accepted. Then plot this acceptance probability
against b. Examine how the acceptance probability for this algorithm depends b.

Solution:

(a) The observed data is y = (y1, . . . , yn) = (6, 4, 9, 2, 0, 3) where n = 6, and each
yi ∼ Poisson(λ) with pmf

p(yi | λ) =
λyie−λ

yi!
.

The log likelihood is

log p(y | λ) = log

6∏
i=1

p(yi | λ) =

6∑
i=1

log p(yi | λ).
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The prior for λ, p(λ), is Gamma(1, 1) with pdf p(λ) = e−λ, λ > 0.

Define

L(λ) = log (p(λ) p(y | λ)) = log (p(λ)) + log (p(y | λ)) ,

the log of the posterior density (up to a constant).

Start with λ1 randomly. For each i > 1:

i. Generate ψ ∼ N(λi−1, b
2), for b = 0.2.

ii. Compute the probability of acceptance

δ = min (0,L(ψ)− L(λi−1)) .

iii. Generate U ∼ U [0, 1]. Set

λi =

{
ψ, if log(U) < δ

λi−1, otherwise

(b) The chain moves up and down quickly through the parameter space.
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Figure 1: Sample paths when b = 0.2

(c) From Figure 2 the empirical distribution of the simulated values is very close to
the true posterior distribution for λ

(d) In this question we examine the choices b = 0.01 and b = 20. Figure 3 shows the
sample paths of a single run of the corresponding symmetric Metropolis-Hastings
under two different proposal standard deviations b. Table 1 shows the probability
of acceptance. Choosing b too small yields, a very high probability of acceptance,
however at the price of a chain that is hardly moving. Choosing b too large allows
the chain to move fast and make large jumps, however, most of the proposed values
are rejected, so the chain remains for a long time at each accepted values. We also
see that b = 0.2 is not the optimal choice as the probability of acceptance is very
high (0.80). Theoretically, it has been shown that the optimal acceptance rate is
around 0.234-(an asymptotic result). But experience suggests that an acceptance
rate of around 20%-30%. Thus, the standard deviation b should be tuned to get
an acceptance rate of around this level.

(e)
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Figure 2: Empirical distribution of the chain vs true Gamma posterior distribution when
b = 0.2
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Figure 3: Markov chains under two different proposal standard deviations b. Going from left
to right, the values of b are 0.01 and 20, respectively.

Probability of acceptance

b = 0.01 0.9448

b = 0.2 0.7972

b = 20 0.1856

2. 50 marks. Let y1, . . . , yn be a sample from a Poisson distribution with mean λ, where
λ is given a Gamma(α, β) prior distribution.

(a) It is observed that y1 = y2 = · · · = yn = 0, and we take α = 1, β = 1.

i. What is the posterior distribution for λ?

ii. What is the posterior mean?

iii. What is the posterior median and an equal tail 95% credible interval for λ
(without using R)?

(b) Show that if a new data-point x is generated from the same Poisson distribution,
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Figure 4: Plot of acceptance probability as a function of the proposal standard deviation b.

the posterior predictive probability that x = 0 is

p(x = 0 | y) =
n+ 1

n+ 2
.

(c) Now suppose that we have general y1, . . . , yn, α and β; and that again x is a new
data-point from the same Poisson distribution.

i. Find the mean and variance of x.

ii. Derive the full posterior predictive distribution for x.

Solution:

(a) For general y1, . . . , yn, α and β, the posterior distribution is

λ ∼ Gamma(S + α, n+ β), S =
n∑
i=1

yi.

i. If S = 0 and α = 1, β = 1, the posterior distribution is Gamma(1, n+ 1) with
pdf

p(λ | y) = (n+ 1)e−(n+1)λ, λ ≥ 0.

ii. The posterior mean is

E(λ | y) =
1

n+ 1
.

iii. The posterior pdf is

p(λ | y) = (n+ 1)e−(n+1)λ, λ ≥ 0.

Integrating this gives cdf

F (λ) =

∫ λ

0
(n+ 1)e−(n+1)λ′ dλ′ = 1− e−(n+1)λ.

The inverse cdf function (quantile function) isQ(u), found by setting F (λ) = u.

1− e−(n+1)λ = u
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e−(n+1)λ = 1− u
−(n+ 1)λ = log(1− u)

Q(u) = λ = − log(1− u)

n+ 1

The posterior median is Q(0.5) = − log(0.5)

n+ 1
.

The limits for a 95% credible interval are given by

(Q(0.025), Q(0.975)) =

(
− log(0.975)

n+ 1
,− log(0.025)

n+ 1

)
.

(b) For a given value of λ, the probability that a new data-point x is zero is the Poisson
probability mass function

P (x = 0 | λ) = e−λ.

The posterior predictive probability that x is zero is

P (x = 0 | y) =

∫ ∞
0

P (x = 0 | λ) p(λ | y) dλ

=

∫ ∞
0

e−λ (n+ 1) e−(n+1)λ dλ

=

∫ ∞
0

(n+ 1) e−(n+2)λ dλ

=
n+ 1

n+ 2
.

(c) The general posterior distribution for λ is Gamma(a, b), where a = S + α and
b = n+ β.

i. For a given value of λ, if a new data-point x ∼ Poisson(λ), independently of
y, then

E(x | λ, y) = E(x | λ) = λ, Var(x | λ, y) = Var(x | λ) = λ.

Putting these together and by the law of iterated expectation, the predictive
mean for x is

E(E(x | λ, y)) = E(λ) =
α

β
,

So E(x) = α
β . By the law of total variance,

E(Var(x | λ, y)) + Var(E(x | λ, y)) = E(λ) + Var(λ) =
α

β
+

α

β2
.

so var(x) = α
β + α

β2

ii. The posterior predictive distribution is

p(x | y) =

∫ ∞
0

p(x | λ) p(λ | y) dλ

=

∫ ∞
0

λxe−λ

x!

baλa−1e−bλ

Γ(a)
dλ

=
ba

x!Γ(a)

∫ ∞
0

λa+x−1e−(b+1)λ dλ
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For a Gamma(a, b) density, we know

1 =

∫ ∞
0

ba

Γ(a)
θa−1e−bθdθ, a > 0, b > 0.

This means ∫ ∞
0

θa−1e−bθdθ =
Γ(a)

ba
, a > 0, b > 0.

Now substitute a+ x = α+ S + x instead of a and 1 + b = β + n+ 1 instead
of b to get ∫ ∞

0
λa+x−1e−(b+1)λ dλ =

Γ(α+ S + x)

(β + 1 + n)α+S+x
.

Then,

p(x | y) =
(β + n)S+α

x!Γ(S + α)

Γ(α+ S + x)

(β + 1 + n)α+S+x
.

iii. R code to check the part (a) is on QMPlus.

> alpha = 1

> beta = 1

> S = 0

> n = 11

> a = S + alpha

> b = n + beta

>

> qgamma(0.5, shape=a, rate=b)

[1] 0.05776227

> -log(0.5)/(n+1)

[1] 0.05776227

>

> qgamma(0.025, shape=a, rate=b)

[1] 0.002109817

> qgamma(0.975, shape=a, rate=b)

[1] 0.3074066

> -log(0.975)/(n+1)

[1] 0.002109817

> -log(0.025)/(n+1)

[1] 0.3074066
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