Machine Learning with Python MTH786U/P 2023/24

Week 12: Decision Trees

Nicola Perra, Queen Mary University of London (QMUL)

How can we deal with data like this one?

Shadow	Garlic	Complexion Accent	Vampire	
$?$	Yes	Pale	None	No
Yes	Yes	Ruddy	None	No
$?$	No	Ruddy	None	Yes
No	No	Average	Heavy	Yes
$?$	No	Average	Odd	Yes
Yes	No	Pale	Heavy	No
Yes	No	Average	Heavy	No
$?$	Yes	Ruddy	Odd	No

Issues

All data is categorical

Issues

All data is categorical
Some features might not matter

Issues

All data is categorical

Some features might not matter
Some features might be important only is some cases

Issues

All data is categorical
Some features might not matter
Some features might be important only is some cases

Cost associated to different "measurements" to assess different features might not be the same

Identification trees

Identification trees offer a solution to these problems

Identification trees

Identification trees offer a solution to these problems
The intuition is that you can stack the most relevant tests and classify the data progressively

Identification trees

Identification trees offer a solution to these problems
The intuition is that you can stack the most relevant tests and classify the data progressively

Identification trees

What are the characteristics of a good identification tree?

Identification trees

What are the characteristics of a good identification tree?

Classify the data well with a small number of "tests" (called stumps)

Identification trees

What are the characteristics of a good identification tree?

Classify the data well with a small number of "tests" (called stumps)

The longer the tree the higher the probability of overfitting

Identification trees

What are the characteristics of a good identification tree?

Classify the data well with a small number of "tests" (called stumps)

The longer the tree the higher the probability of overfitting

How do we select the number and order of tests to do?!

Identification trees

Let see how each test perform at the first level

Identification trees

Let see how each test perform at the first level

Identification trees

Let see how each test perform at the first level

Identification trees

Let see how each test perform at the first level

Identification trees

Let see how each test perform at the first level

Identification trees

Let see how each test perform at the first level

If they have a shadow they appear not to be vampires.

Identification trees

Let see how each test perform at the first level

Identification trees

Let see how each test perform at the first level

Identification trees

Let see how each test perform at the first level

Identification trees

Let see how each test perform at the first level

Identification trees

Which is the best to use?

Accent		
None		Odd
1 Y	1 Y	1 Y
2 N	2 N	1 N

We should look for tests that divide the sample in homogenous samples

Identification trees

Which is the best to use?

Idea: let us use a "score" of each test the number of samples that are split in homogenous classes

Identification trees

Which is the best to use?

Identification trees

Which is the best to use?

Number of samples that are classified in a homogenous class

Identification trees

Which is the best to use?

Identification trees

Which is the best to use?

Identification trees

Which is the best to use?

Identification trees

Which is the best to use?

Identification trees

Shadow appears to be the best according to this score

Accent		
None		Odd
1 Y	1 Y	1 Y
2 N	2 N	1 N

Identification trees

Shadow appears to be the best according to this score

Accent		
None		Odd
1 Y	1 Y	1 Y
2 N	2 N	1 N

We can then select it as the root of the tree

Identification trees

Shadow appears to be the best according to this score

We can then select it as the root of the tree

Identification trees

Identification trees

We can apply the same method to the branch that is not homogenous

Identification trees

We can apply the same method to the branch that is not homogenous

| Shadow | Garlic | Complexio
 n | Accent | Vampire |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $?$ | Yes | Pale | None | No |
| $?$ | No | Ruddy | None | Yes |
| $?$ | No | Average | Odd | Yes |
| $?$ | Yes | Ruddy | Odd | No |

Identification trees

	Remaining			data	
Shadow	Garlic	Complexio n	Accent	Vampire	
$?$		Pale	None	No	
$?$	Yes	No	Ruddy	None	Yes
$?$	No	Average	Odd	Yes	
$?$	Yes	Ruddy	Odd	No	

Identification trees

Remaining data

| Shadow | Garlic | Complexio
 n | Accent | Vampire |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $? ?$ | Yes | Pale | None | No |
| $?$ | No | Ruddy | None | Yes |
| $?$ | No | Average | Odd | Yes |
| $?$ | Yes | Ruddy | Odd | No |

Identification trees

Remaining data

| Shadow | Garlic | Complexio
 n | Accent | Vampire |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $? ?$ | Yes | Pale | None | No |
| $?$ | No | Ruddy | None | Yes |
| $?$ | No | Average | Odd | Yes |
| $?$ | Yes | Ruddy | Odd | No |

Identification trees

	Remaining			data	
Shadow	Garlic	Complexio	Accent	Vampire	
$?$		n			
$? ?$	Yes	Pale	None	No	
$?$	No	Ruddy	None	Yes	
$?$	No	Average	Odd	Yes	
$?$	Yes	Ruddy	Odd	No	

Identification trees

What is the score of each second test?

Shadow

Identification trees

Identification trees

In real application it is rare to find perfectly homogenous classes

Identification trees

In real application it is rare to find perfectly homogenous classes

What can we do? We need a less strict scoring system

Identification trees

In real application it is rare to find perfectly homogenous classes

What can we do? We need a less strict scoring system

Idea: perfect homogenous branches are great, but we can a measure of disorder more in general

Quantifying disorder

We can use metrics from information theory

$$
D(\text { set })=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right)
$$

Quantifying disorder

We can use metrics from information theory

$$
D(\text { set })=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right)
$$

Where D is the disorder, P are the positive samples, N the negative samples, and T the total number of samples $T=P+N$

Quantifying disorder

How does D looks like as function of P / T ?

$$
D(\text { set })=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right)
$$

Quantifying disorder

How does D looks like as function of P / T ?

$$
D(s e t)=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right)
$$

If $P=N$?

Quantifying disorder

How does D looks like as function of P / T ?

$$
\begin{aligned}
& D(\text { set })=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right) \\
& \text { If } \mathrm{P}=\mathrm{N} \text { ? } \\
& \qquad D(\text { set })=-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)
\end{aligned}
$$

Quantifying disorder

How does D looks like as function of P / T ?

$$
\begin{aligned}
& D(\text { set })=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right) \\
& \text { If } \mathrm{P}=\mathrm{N} \text { ? } \\
& \qquad \begin{aligned}
D(\text { set }) & =-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right) \\
& =\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
\end{aligned}
$$

Quantifying disorder

How does D looks like as function of P / T ?

$$
D(\text { set })=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right)
$$

If $\mathrm{P}=\mathrm{N}$?

$$
\begin{aligned}
D(\text { set }) & =-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right) \\
& =\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Quantifying disorder

How does D looks like as function of P / T ?

$$
\begin{aligned}
& D(\text { set })=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right) \\
& \text { If } \mathrm{P}=0 ? \quad D(\text { set })=0 \\
& \text { If } \mathrm{P}=\mathrm{T} ? \quad D(\text { set })=0
\end{aligned}
$$

Quantifying disorder

How does D looks like as function of P / T ?

$$
\begin{aligned}
& D(\text { set })=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right) \\
& \text { If } \mathrm{P}=0 ? \quad D(\text { set })=0 \\
& \text { If } \mathrm{P}=\mathrm{T} ? \quad D(\text { set })=0
\end{aligned}
$$

Quantifying disorder

How does D looks like as function of P / T ?

$$
\begin{aligned}
& D(\text { set })=-\frac{P}{T} \log _{2}\left(\frac{P}{T}\right)-\frac{N}{T} \log _{2}\left(\frac{N}{T}\right) \\
& \text { If } \mathrm{P}=0 ? \quad D(\text { set })=0 \\
& \text { If } \mathrm{P}=\mathrm{T} ? \quad D(\text { set })=0
\end{aligned}
$$

Quantifying disorder

So the quality of a test can we written as

$$
Q=\sum_{s} D(s)
$$

Quantifying disorder

So the quality of a test can we written as

$$
Q=\sum_{s} D(s)
$$

It is however better to have a normalized quantity according to the number of samples

Quantifying disorder

So the quality of a test can we written as

$$
Q=\sum_{s} D(s)
$$

It is however better to have a normalized quantity according to the number of samples

$$
Q=\sum_{s} D(s) \frac{N_{s}}{N_{t}}
$$

Quantifying disorder

So the quality of a test can we written as

$$
Q=\sum_{s} D(s)
$$

It is however better to have a normalized quantity according to the number of samples

$$
Q=\sum_{s} D(s) \frac{N_{s}}{N_{t}}
$$

Where we have N_{s} as the number of samples in the set and N_{t} as the total number of samples that enters the test

Identification trees

What is the value of Q in this case? In this case, the smallest the better!

Identification trees

What is the value of Q in this case? In this case, the smallest the better!

Identification trees

What is the value of Q in this case?

Identification trees

What is the value of Q in this case?

Identification trees

What is the score of each second test?

Shadow

Identification trees

Identification trees

We can convert this tree into a set of rules to classify

Identification trees

We can convert this tree into a set of rules to classify

If Shadow ? and Garlic Y -> not a vampire

Identification trees

We can convert this tree into a set of rules to classify

If Shadow ? and Garlic Y -> not a vampire
If Shadow ? and Garlic N -> vampire

Identification trees

We can convert this tree into a set of rules to classify

```
If Shadow ? and Garlic Y -> not a vampire
If Shadow ? and Garlic N -> vampire
```

Note: we might not need both rules in practice In our data if Garlic is N we have a vampire independently of the Shadow

Quantifying disorder

There are also other metrics such as the Gini impurity

Quantifying disorder

There are also other metrics such as the Gini impurity
Let us consider a group of N items

Quantifying disorder

There are also other metrics such as the Gini impurity
Let us consider a group of N items
Let us assume that they belong to one of K categories

Quantifying disorder

There are also other metrics such as the Gini impurity
Let us consider a group of N items
Let us assume that they belong to one of K categories
We can define the probability p_{i} for each category as $p_{i}=\frac{N_{i}}{N}$

Quantifying disorder

There are also other metrics such as the Gini impurity
Let us consider a group of N items
Let us assume that they belong to one of K categories
We can define the probability p_{i} for each category as $p_{i}=\frac{N_{i}}{N}$
The Gini impurity of this population is then defined as

Quantifying disorder

There are also other metrics such as the Gini impurity
Let us consider a group of N items
Let us assume that they belong to one of K categories
We can define the probability p_{i} for each category as $p_{i}=\frac{N_{i}}{N}$
The Gini impurity of this population is then defined as

$$
G I=1-\sum_{i=1}^{k} p_{i}^{2}
$$

Quantifying disorder

In this example $N=7$

Quantifying disorder

In this example $N=7$

$$
p_{\text {red }}=\frac{4}{7}
$$

Quantifying disorder

In this example $N=7$

$$
p_{\text {red }}=\frac{4}{7} \quad p_{\text {violet }}=\frac{2}{7}
$$

Quantifying disorder

In this example $N=7$

$$
p_{\text {red }}=\frac{4}{7} \quad p_{\text {violet }}=\frac{2}{7} \quad p_{\text {orange }}=\frac{1}{7}
$$

Quantifying disorder

In this example $N=7$

$$
p_{\text {red }}=\frac{4}{7} \quad p_{\text {violet }}=\frac{2}{7} \quad p_{\text {orange }}=\frac{1}{7}
$$

Thus

Quantifying disorder

In this example $N=7$

$$
p_{\text {red }}=\frac{4}{7} \quad p_{\text {violet }}=\frac{2}{7} \quad p_{\text {orange }}=\frac{1}{7}
$$

Thus

$$
G I=1-\left(\frac{4}{7}\right)^{2}-\left(\frac{2}{7}\right)^{2}-\left(\frac{1}{7}\right)^{2}=1-\frac{21}{49}=0.57
$$

Quantifying disorder

In this example, they are all different $\quad K=N=7$

Quantifying disorder

In this example, they are all different $\quad K=N=7$

$$
p_{i}=\frac{1}{N}
$$

Quantifying disorder

In this example, they are all different $\quad K=N=7$

$$
p_{i}=\frac{1}{N}
$$

Thus

Quantifying disorder

In this example, they are all different $\quad K=N=7$

$$
p_{i}=\frac{1}{N}
$$

Thus

$$
G I=1-\sum_{i=1}^{K} \frac{1}{N^{2}}=1-\frac{K}{N^{2}}=1-\frac{N}{N^{2}}=1-\frac{1}{N}=\frac{N-1}{N} \sim 1
$$

Quantifying disorder

In this example, they are all the same

$$
N=7 \quad K=1
$$

Quantifying disorder

In this example, they are all the same

$$
N=7 \quad K=1
$$

$$
p_{1}=1
$$

Quantifying disorder

In this example, they are all the same

$$
N=7 \quad K=1
$$

$$
p_{1}=1
$$

Thus

Quantifying disorder

In this example, they are all the same

$$
N=7 \quad K=1
$$

$$
p_{1}=1
$$

Thus

$$
G I=1-p_{1}^{2}=0
$$

Quantifying disorder

In this example, they are all the same

$$
\begin{array}{ll}
N=7 \quad K=1 & \\
& p_{1}=1
\end{array}
$$

Thus

$$
G I=1-p_{1}^{2}=0
$$

Hence, the Gini impurity is zero for "pure" samples and 1 for maximally "impure"

Quantifying disorder

What is the Gini impurity of the outcome of each test?

Quantifying disorder

What is the Gini impurity of the outcome of each test?

We have, in this case, three groups (leafs), we start by computing their Gl

Quantifying disorder

What is the Gini impurity of the outcome of each test?

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
G I_{?}=1-\left(\frac{2}{4}\right)^{2}-\left(\frac{2}{4}\right)^{2}=\frac{1}{2}
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
G I_{?}=1-\left(\frac{2}{4}\right)^{2}-\left(\frac{2}{4}\right)^{2}=\frac{1}{2} \quad G I_{Y}=0
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
G I_{?}=1-\left(\frac{2}{4}\right)^{2}-\left(\frac{2}{4}\right)^{2}=\frac{1}{2} \quad G I_{Y}=0 \quad G I_{N}=0
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
G I_{?}=1-\left(\frac{2}{4}\right)^{2}-\left(\frac{2}{4}\right)^{2}=\frac{1}{2} \quad G I_{Y}=0 \quad G I_{N}=0
$$

We can combined them using a weighted average, considering the different number of people in each leaf

Quantifying disorder

$$
G I_{\text {shadow }}=w_{?} G I_{?}+w_{Y} G I_{Y}+w_{N} G I_{N}
$$

Quantifying disorder

Quantifying disorder

Quantifying disorder

$$
\begin{aligned}
G I_{\text {shadow }}=w_{?} G I_{?}+w_{Y} G I_{Y}+w_{N} G I_{N} & \\
& w_{?}=\frac{4}{8}=\frac{1}{2}
\end{aligned} w_{Y}=\frac{3}{8} \quad w_{N}=\frac{1}{8}
$$

Quantifying disorder

$$
G I_{\text {shadow }}=w_{?} G I_{?}+w_{Y} G I_{Y}+w_{N} G I_{N} \quad \text { Shadow } \quad w_{N}=\frac{1}{8}
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
G I_{Y}=0
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?
$G I_{Y}=0$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
\begin{gathered}
\text { Garlic } \\
G I_{Y}=0 \quad G I_{N}=1-\left(\frac{3}{5}\right)^{2}-\left(\frac{2}{5}\right)^{2}=0.48 \\
G I_{\text {garlic }}=w_{N} G I_{N}+w_{Y} G I_{Y}=\frac{5}{8} 0.48=0.3
\end{gathered}
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

Quantifying disorder

What is the Gini impurity of the outcome of each test?

Quantifying disorder

What is the Gini impurity of the outcome of each test?

	Complexion
Pale	
2 N	1 N
	2 Y

$$
G I_{\text {Pale }}=0 \quad G I_{\text {ave }}=1-\left(\frac{1}{3}\right)^{2}-\left(\frac{2}{3}\right)^{2}=0.44
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
G I_{\text {Pale }}=0 \quad G I_{\text {ave }}=1-\left(\frac{1}{3}\right)^{2}-\left(\frac{2}{3}\right)^{2}=0.44 \quad G I_{\text {ruddy }}=0.44
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
\begin{gathered}
\text { Complexion } \\
G I_{\text {Pale }}=0 \quad G I_{\text {ave }}=1-\left(\frac{1}{3}\right)^{2}-\left(\frac{2}{3}\right)^{2}=0.44 \quad G I_{\text {ruddy }}=0.44 \\
G I_{\text {complexion }}=2 \frac{3}{8} 0.44=0.33
\end{gathered}
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
G I_{\text {none }}=0.44
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

Quantifying disorder

What is the Gini impurity of the outcome of each test?

Accent		
None		dd
1 Y	1 Y	1 Y
2 N	2 N	1 N

$$
G I_{\text {none }}=0.44
$$

$$
G I_{\text {heavy }}=0.44
$$

$$
G I_{o d d}=0.5
$$

Quantifying disorder

What is the Gini impurity of the outcome of each test?

$$
\begin{gathered}
\text { Accent } \\
G I_{\text {none }}=0.44 \quad \text { Odd } \\
2 \mathrm{~N} \quad 2 \mathrm{~N} \\
G I_{\text {heavy }}=0.44 \\
G I_{\text {complexion }}= \\
\hline \frac{3}{8} 0.44+\frac{2}{8} 0.5=0.45
\end{gathered} \quad G I_{\text {odd }}=0.5
$$

Identification trees

Shadow appears to be the best also according to this score

Identification trees

Shadow appears to be the best also according to this score

We can then select it as the root of the tree

Identification trees

Shadow appears to be the best also according to this score

We can then select it as the root of the tree

Identification trees

What if we have numeric values? Can we use the method?

Identification trees

What if we have numeric values? Can we use the method?

Imagine that we have another variable that takes numeric values

Identification trees

What if we have numeric values? Can we use the method?

Imagine that we have another variable that takes numeric values

Identification trees

What if we have numeric values? Can we use the method?

Imagine that we have another variable that takes numeric values

We can set a threshold and transform the variable in categorical

Identification trees

What if we have numeric values? Can we use the method?

Imagine that we have another variable that takes numeric values

We can set a threshold and transform the variable in categorical How do I select such threshold?

Identification trees

Imagine that we get another variable

Shadow	Garlic	Complexion Accent	Height	Vampire	
$?$	Yes	Pale	None	162	No
Yes	Yes	Ruddy	None	173	No
$?$	No	Ruddy	None	198	Yes
No	No	Average	Heavy	185	Yes
$?$	No	Average	Odd	197	Yes
Yes	No	Pale	Heavy	187	No
Yes	No	Average	Heavy	175	No
$?$	Yes	Ruddy	Odd	168	No

Identification trees

We first order the data according to the numeric values

Height	Vampire
162	No
168	No
173	No
175	No
185	Yes
187	Yes
197	Yes
198	Yes

Identification trees

Then we compute the average for each pair

Height	Vampire
162	No
168	No
173	No
175	No
185	Yes
187	Yes
197	Yes
198	Yes

Identification trees

Then we compute the average for each pair

Height		Vampire
165162	No	
170.5	168	No
174	No	
170	175	No
186	185	Yes
192	Yes	
197.5	197	Yes
198	Yes	

Identification trees

The we use each average as threshold and compute the disorder of the test done with that value

	Height	Vampire
165	162	No
170.5	168	No
174	173	No
180	175	No
186	185	Yes
192	187	Yes
197.5	197	Yes
198	Yes	

Identification trees

The we use each average as threshold and compute the disorder of the test done with that value

Height		
	Vampire	
165	162	No
170.5	168	No
174	173	No
180	185	No
186	185	Yes
192	187	Yes
197.5	Yes	
198	Yes	

Identification trees

The we use each average as threshold and compute the disorder of the test done with that value

Height		
	Vampire	
165	162	No
170.5	168	No
174	173	No
180	185	No
186	185	Yes
192	187	Yes
197.5	Yes	
198	Yes	

Identification trees

The we use each average as threshold and compute the disorder of the test done with that value

	Height	Vampire
165	162	No
170.5	168	No
174	No	
173	175	No
186	185	Yes
192	187	Yes
197.5	Yes	
198	Yes	

$$
\begin{gathered}
\text { Height<165 } \\
G I_{Y}=0 \quad 3 \mathrm{Y} \\
G I_{\text {Height }<165}=\frac{7}{8} 0.49=0.42
\end{gathered}
$$

Identification trees

We then try this with all possible values and get the smallest!

Height		
	Vampire	
165	162	No
170.5	168	No
174	No	
170	175	No
186	185	Yes
192	Yes	
197.5	Yes	
198	Yes	

Identification trees

Often numeric data is represented in this way

Identification trees

Often numeric data is represented in this way

Decision boundaries must be parallel to one of the axes! They are defined by a threshold

Identification trees

Often numeric data is represented in this way
Decision boundaries must be parallel to one of the axes! They are defined by a threshold

Identification trees

Often numeric data is represented in this way
Decision boundaries must be parallel to one of the axes! They are defined by a threshold

Identification trees

Nearest neighbors could give us this

Random forests

Trees are, as we saw, very simple and intuitive

Random forests

Trees are, as we saw, very simple and intuitive

In their simplest form however they are inaccurate

Random forests

Trees are, as we saw, very simple and intuitive

In their simplest form however they are inaccurate

They might be good in the training set, but they are not as good in validation

Random forests

Trees are, as we saw, very simple and intuitive

In their simplest form however they are inaccurate

They might be good in the training set, but they are not as good in validation

A possible solution (and there are many) is using so-called random forests!

Random forests

Trees are, as we saw, very simple and intuitive In their simplest form however they are inaccurate

They might be good in the training set, but they are not as good in validation

A possible solution (and there are many) is using so-called random forests!
Random forests are one of the many ensemble methods

Random forests

The main idea of random forests is very similar to boostrapping for regressions

Random forests

The main idea of random forests is very similar to boostrapping for regressions

They allow "sampling" data and many different identification trees by considering a random number of features

Random forests

The main idea of random forests is very similar to boostrapping for regressions

They allow "sampling" data and many different identification trees by considering a random number of features

The classification is done considering a majority vote across many different trees

Random forests

First step to build a random forest is to get a boostrapped dataset

Random forests

First step to build a random forest is to get a boostrapped dataset
This is the same things we did for the regression case!

Random forests

First step to build a random forest is to get a boostrapped dataset
This is the same things we did for the regression case!

Pick s samples at random with replacement from the original dataset

Random forests

Shadow	Garlic	Complexio n	Accent	Vampire	
$?$	Yes	Pale	None	No	
Yes	Yes	Ruddy	None	No	
$?$	No	Ruddy	None	Yes	
No	No	Average	Heavy	Yes	
$?$	No	Average	Odd	Yes	
Yes	No	Pale	Heavy	No	
Yes	No	Average	Heavy	No	
$?$		Yes	Ruddy	Odd	No

Original dataset

Random forests

Shadow	Garlic	Complexio n	Accent	Vampire
$?$	Yes	Pale	None	No
Yes	Yes	Ruddy	None	No
$?$	No	Ruddy	None	Yes
No	No	Average	Heavy	Yes
$?$	No	Average	Odd	Yes
Yes	No	Pale	Heavy	No
Yes	No	Average	Heavy	No
$?$	Yes	Ruddy	Odd	No

Original dataset

Random forests

| Shadow | Garlic | Complexio
 n | Accent | Vampire |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $?$ | Yes | Pale | None | No |
| Yes | Yes | Ruddy | None | No |
| $? ?$ | No | Ruddy | None | Yes |
| No | No | Average | Heavy | Yes |
| $?$ | No | Average | Odd | Yes |
| Yes | No | Pale | Heavy | No |
| Yes | No | Average | Heavy | No |
| $?$ | Yes | Ruddy | Odd | No |

Original dataset
Boostrapped dataset

Random forests

Same sample are repeated!

Shadow	Garlic	Complexio n	Accent	Vampire	
$?$	Yes	Pale	None	No	
Yes	Yes	Ruddy	None	No	
$?$	No	Ruddy	None	Yes	
No	No	Average	Heavy	Yes	
$?$	No	Average	Odd	Yes	
Yes	No	Pale	Heavy	No	
Yes	No	Average	Heavy	No	
$?$		Yes	Ruddy	Odd	No

| Shadow | Garlic | Complexion Accent | Vampire | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | No | No | Average | Heavy | Yes |
| $?$ | ? | No | Ruddy | None | Yes |
| No | No | Average | Heavy | Yes | |
| ? | | No | Average | Odd | Yes |
| Yes | No | Po | Pale | Heavy | No |
| Yes | No | Pale | Heavy | No | |

Original dataset
Boostrapped dataset

Random forests

Second step is to create decision trees from the bootstrapped dataset

Random forests

Second step is to create decision trees from the bootstrapped dataset

Key aspect: only a random number of variables are used!

Random forests
We could pick these two

Shadow	Garlic	Complexion	Accent	Vampire
No	No	Average	Heavy	Yes
?	No	Ruddy	None	Yes
?	No	Ruddy	None	Yes
No	No	Average	Heavy	Yes
?	No	Average	Odd	Yes
Yes	No	Pale	Heavy	No
Yes	No	Pale	Heavy	No
Yes	No	Pale	Heavy	No

Random forests

Imagine that "shadow" is the best, between the two, to split the sample
So, it will be the root of our tree

Shadow	Garlic	Complexion	Accent	Vampire
No	No	Average	Heavy	Yes
$? ?$	No	Ruddy	None	Yes
$?$	No	Ruddy	None	Yes
No	No	Average	Heavy	Yes
$?$	No	Average	Odd	Yes
Yes	No	Pale	Heavy	No
Yes	No	Pale	Heavy	No
Yes	No	Pale	Heavy	No

Random forests

Imagine that "shadow" is the best, between the two, to split the sample
So, it will be the root of our tree

Then we keep building the tree by selecting again at random two other variables

Shadow	Garlic	Complexion	Accent	Vampire
No	No	Average	Heavy	Yes
$? ?$	No	Ruddy	None	Yes
$? ?$	No	Ruddy	None	Yes
No	No	Average	Heavy	Yes
$?$	No	Average	Odd	Yes
Yes	No	Pale	Heavy	No
Yes	No	Pale	Heavy	No
Yes	No	Pale	Heavy	No

Random forests

So we keep building the tree

Shadow	Garlic	Complexion	Accent	Vampire
No	No	Average	Heavy	Yes
$?$	No	Ruddy	None	Yes
$?$	No	Ruddy	None	Yes
No	No	Average	Heavy	Yes
$?$	No	Average	Odd	Yes
Yes	No	Pale	Heavy	No
Yes	No	Pale	Heavy	No
Yes	No	Pale	Heavy	No

Random forests

So we keep building the tree

| Shadow | Garlic | Complexion | Accent | Vampire |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No | No | Average | Heavy | Yes |
| $?$ | No | Ruddy | None | Yes |
| $?$ | No | Ruddy | None | Yes |
| No | No | Average | Heavy | Yes |
| $?$ | No | Average | Odd | Yes |
| Yes | No | Pale | Heavy | No |
| Yes | No | Pale | Heavy | No |
| Yes | No | Pale | Heavy | No |

We keep going as usual until we have found all the leafs

Random forests

Then we go back to step 1 and repeat and get another tree many times

Random forests

Then we go back to step 1 and repeat and get another tree many times

This builds our forest!

Random forests

The variety that of decision trees that we build it turns out to improve their precision

Random forests

The variety that of decision trees that we build it turns out to improve their precision

But, how do we use it for real?

Random forests

It is very simple, we get a new data point that we need to classify

Random forests

It is very simple, we get a new data point that we need to classify

Shadow	Garlic	Complexion Accent	Vampire
No	No	Average Heavy ?	

Random forests

It is very simple, we get a new data point that we need to classify

Shadow	Garlic	Complexion Accent	Vampire
No	No	Average Heavy	

Then we run this data point in each decision tree in the forest

Random forests

Random forests

In this simple case, the new data point is classified as a vampire 2 times over 3

Random forests

Random forests

The option with the majority of "votes" is the solution!

Random forests

Key question: how do we know or estimate the precision of the forest?

Random forests

In the boostrapped dataset, how many samples are not selected, on average?

Random forests

In the boostrapped dataset, how many samples are not selected, on average?
Probability of being selected in one draw is $\frac{1}{S}$

Random forests

In the boostrapped dataset, how many samples are not selected, on average?
Probability of being selected in one draw is $\frac{1}{S}$
Probability of NOT being selected in one draw is $1-\frac{1}{s}$

Random forests

In the boostrapped dataset, how many samples are not selected, on average?
Probability of being selected in one draw is $\frac{1}{S}$
Probability of NOT being selected in one draw is $1-\frac{1}{s}$
Probability of NOT being selected after s draws is $\left(1-\frac{1}{s}\right)^{s} \xrightarrow{s \rightarrow \infty} \frac{1}{e}$

Random forests

In the boostrapped dataset, how many samples are not selected, on average?
Probability of being selected in one draw is $\frac{1}{S}$
Probability of NOT being selected in one draw is $1-\frac{1}{s}$
Probability of NOT being selected after s draws is $\left(1-\frac{1}{s}\right)^{s} \xrightarrow{s \rightarrow \infty} \frac{1}{e}$
So, we can use this 36% of the data for evaluation!

Random forests

In the boostrapped dataset, how many samples are not selected, on average?
Probability of being selected in one draw is $\frac{1}{S}$
Probability of NOT being selected in one draw is $1-\frac{1}{S}$
Probability of NOT being selected after s draws is $\left(1-\frac{1}{s}\right)^{s} \xrightarrow{s \rightarrow \infty} \frac{1}{e}$
So, we can use this 36% of the data for evaluation!
This subsample is called out-of-bag sample

Random forests

However, how do we pick the number of random variables to build the forest?

Random forests

However, how do we pick the number of random variables to build the forest?

We use this number of hyper-parameter and confront the out-of-bag error

Random forests

However, how do we pick the number of random variables to build the forest?

We use this number of hyper-parameter and confront the out-of-bag error

The starting point is often the square-root of the number of variables, then you consider values below and above this

AdaBoost (adaptive boosting)

So far, we have used either one or multiple "full" decision trees

AdaBoost (adaptive boosting)

So far, we have used either one or multiple "full" decision trees

It turns out that we can use many weak leaners (i.e., stumps) instead

AdaBoost (adaptive boosting)

So far, we have used either one or multiple "full" decision trees

It turns out that we can use many weak leaners (i.e., stumps) instead

We use a forest of stumps

AdaBoost

This was our first full tree

AdaBoost

In AdaBoost we will be using stumps

AdaBoost VS random forest

In random forests, each tree had an equal weight on the final decision

AdaBoost VS random forest

In random forests, each tree had an equal weight on the final decision In a forest of stumps made with AdaBoost, some will be considered as more important than others

AdaBoost VS random forest

In random forests, each tree had an equal weight on the final decision
In a forest of stumps made with AdaBoost, some will be considered as more important than others

In random forests, each tree was independent of the others

AdaBoost VS random forest

In random forests, each tree had an equal weight on the final decision
In a forest of stumps made with AdaBoost, some will be considered as more important than others

In random forests, each tree was independent of the others
In a forest of stumps made with AdaBoost, order is key

AdaBoost VS random forest

In random forests, each tree had an equal weight on the final decision
In a forest of stumps made with AdaBoost, some will be considered as more important than others

In random forests, each tree was independent of the others
In a forest of stumps made with AdaBoost, order is key
In particular, the error that the first stump makes influence how the second stump is made, the error of the second stump influence the third etc..

AdaBoost
Let us now see how this is done

AdaBoost

Let us now see how this is done
We start adding a weight defining how important is to correctly classify each sample

AdaBoost

Let us now see how this is done
We start adding a weight defining how important is to correctly classify each sample

| Shadow | Garlic | Complexion | Accent | Vampire | Weight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $? ?$ | Yes | Pale | None | No | $1 / 8$ |
| Yes | Yes | Ruddy | None | No | $1 / 8$ |
| $? ?$ | No | Ruddy | None | Yes | $1 / 8$ |
| No | No | Average | Heavy | Yes | $1 / 8$ |
| $?$ | No | Average | Odd | Yes | $1 / 8$ |
| Yes | No | Pale | Heavy | No | $1 / 8$ |
| Yes | No | Average | Heavy | No | $1 / 8$ |
| $?$ | Yes | Ruddy | Odd | No | $1 / 8$ |

AdaBoost

Let us now see how this is done
We start adding a weight defining how important is to correctly classify each sample

| Shadow | Garlic | Complexion | Accent | Vampire | Weight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $? ?$ | Yes | Pale | None | No | $1 / 8$ |
| Yes | Yes | Ruddy | None | No | $1 / 8$ |
| $?$ | No | Ruddy | None | Yes | $1 / 8$ |
| No | No | Average | Heavy | Yes | $1 / 8$ |
| $?$ | No | Average | Odd | Yes | $1 / 8$ |
| Yes | No | Pale | Heavy | No | $1 / 8$ |
| Yes | No | Average | Heavy | No | $1 / 8$ |
| $?$ | Yes | Ruddy | Odd | No | $1 / 8$ |

At the start each weight is the same: $\frac{1}{S}$

AdaBoost

We then evaluate which stump does the best job classifying the data using a majority rule

AdaBoost

We then evaluate which stump does the best job classifying the data using a majority rule

Shadow	Garlic	Complexi on	Accent	Vampire	Weight
$?$	Yes	Pale	None	No	$1 / 8$
Yes	Yes	Ruddy	None	No	$1 / 8$
$?$	No	Ruddy	None	Yes	$1 / 8$
No	No	Average	Heavy	Yes	$1 / 8$
$?$	No	Average	Odd	Yes	$1 / 8$
Yes	No	Pale	Heavy	No	$1 / 8$
Yes	No	Average	Heavy	No	$1 / 8$
$?$					

AdaBoost

We then evaluate which stump does the best job classifying the data using a majority rule

Classification

Shadow	Garlic	Complexi on	Accent	Vampire	Weight
$?$	Yes	Pale	None	No	$1 / 8$
Yes	Yes	Ruddy	None	No	$1 / 8$
$? ?$	No	Ruddy	None	Yes	$1 / 8$
No	No	Average	Heavy	Yes	$1 / 8$
$?$					
$?$	No	Average	Odd	Yes	$1 / 8$
Yes	No	Pale	Heavy	No	$1 / 8$
Yes	No	Average	Heavy	No	$1 / 8$

Yes	Ruddy	Odd	No	$1 / 8$

AdaBoost

We then evaluate which stump does the best job classifying the data using a majority rule

Classification If no -> yes

Shadow	Garlic	Complexi on	Accent	Vampire	Weight
$?$	Yes	Pale	None	No	$1 / 8$
Yes	Yes	Ruddy	None	No	$1 / 8$
$?$	No	Ruddy	None	Yes	$1 / 8$
No	No	Average	Heavy	Yes	$1 / 8$
$?$	No	Average	Odd	Yes	$1 / 8$
Yes	No	Pale	Heavy	No	$1 / 8$
Yes	No	Average	Heavy	No	$1 / 8$
$?$					
	Yes	Ruddy	Odd	No	$1 / 8$

AdaBoost

We then evaluate which stump does the best job classifying the data using a majority rule

Classification
If no -> yes
If yes -> no

| Shadow | Garlic | Complexi
 on | | Vccent | Vampire |
| :--- | :--- | :--- | :--- | :--- | :--- | Weight

AdaBoost

We then evaluate which stump does the best job classifying the data using a majority rule

Classification
If no -> yes
If yes -> no
If ? -> yes (or no it is the same!)

Shadow	Garlic	Complexi on	Accent	Vampire	Weight
$?$	Yes	Pale	None	No	$1 / 8$
Yes	Yes	Ruddy	None	No	$1 / 8$
$?$	No	Ruddy	None	Yes	$1 / 8$
No	No	Average	Heavy	Yes	$1 / 8$
$?$	No	Average	Odd	Yes	$1 / 8$
Yes	No	Pale	Heavy	No	$1 / 8$
Yes	No	Average	Heavy	No	$1 / 8$
$?$					

AdaBoost

We then evaluate which stump does the best job classifying the data using a majority rule

Classification
If no -> yes
If yes -> no
If ? -> yes (or no it is the same!)

Shadow	Garlic	Complexi on	Accent	Vampire	Weight
$?$	Yes	Pale	None	No	$1 / 8$
Yes	Yes	Ruddy	None	No	$1 / 8$
$?$	No	Ruddy	None	Yes	$1 / 8$
No	No	Average	Heavy	Yes	$1 / 8$
$?$	No	Average	Odd	Yes	$1 / 8$
Yes	No	Pale	Heavy	No	$1 / 8$
Yes	No	Average	Heavy	No	$1 / 8$
$?$					
	Yes	Ruddy	Odd	No	$1 / 8$

AdaBoost

We then evaluate which stump does the best job classifying the data using a majority rule

Classification If no -> yes
If yes -> no
If ? -> yes (or no it is the same!)

Shadow	Garlic	Complexi on	Accent	Vampire	Weight
$?$	Yes	Pale	None	No	$1 / 8$
Yes	Yes	Ruddy	None	No	$1 / 8$
$?$	No	Ruddy	None	Yes	$1 / 8$
No	No	Average	Heavy	Yes	$1 / 8$
$?$	No	Average	Odd	Yes	$1 / 8$
Yes	No	Pale	Heavy	No	$1 / 8$
Yes	No	Average	Heavy	No	$1 / 8$
$?$					

AdaBoost

We then which stump does the best job classifying the data

Garlic	
	N
N	3 Y
	2 N

Classification

If yes $->$ no	2 mistakes
If no $->$ yes	6 correct

Shadow	Garlic	Complexi on		Vccent	Vampire	Weight
$?$	Yes	Pale	None	No	$1 / 8$	
Yes	Yes	Ruddy	None	No	$1 / 8$	
$?$	No	Ruddy	None	Yes	$1 / 8$	
No	No	Average	Heavy	Yes	$1 / 8$	
$?$	No	Average	Odd	Yes	$1 / 8$	
Yes	No	Pale	Heavy	No	$1 / 8$	
Yes	No	Average	Heavy	No	$1 / 8$	
$?$						
Yes	Ruddy	Odd	No	$1 / 8$		

AdaBoost

We then which stump does the best job classifying the data

Classification
If Pale -> no
If Ave -> yes
If Ruddy -> no

Shadow	Garlic	Complexi on		Vccent	Vampire	Weight
$?$	Yes	Pale	None	No	$1 / 8$	
Yes	Yes	Ruddy	None	No	$1 / 8$	
$?$	No	Ruddy	None	Yes	$1 / 8$	
No	No	Average	Heavy	Yes	$1 / 8$	
$?$	No	Average	Odd	Yes	$1 / 8$	
Yes	No	Pale	Heavy	No	$1 / 8$	
Yes	No	Average	Heavy	No	$1 / 8$	
$?$						

AdaBoost

We then which stump does the best job classifying the data

Classification

| Shadow | Garlic | Complexi
 on | Accent | Vampire | Weight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $?$ | Yes | Pale | None | No | $1 / 8$ |
| Yes | Yes | Ruddy | None | No | $1 / 8$ |
| $?$ | No | Ruddy | None | Yes | $1 / 8$ |
| No | No | Average | Heavy | Yes | $1 / 8$ |
| $?$ | No | Average | Odd | Yes | $1 / 8$ |
| Yes | No | Pale | Heavy | No | $1 / 8$ |
| Yes | No | Average | Heavy | No | $1 / 8$ |
| $?$ | | | | | |

AdaBoost

We now select the best stump using, for example, the Gini Impurity

AdaBoost

We now select the best stump using, for example, the Gini Impurity
Shadow has the smaller GI, it will be our first stump

AdaBoost

We now select the best stump using, for example, the Gini Impurity

Shadow has the smaller GI, it will be our first stump

We now have to compute the weight of this stump based on the error it made in the classification

AdaBoost

We now select the best stump using, for example, the Gini Impurity
Shadow has the smaller GI, it will be our first stump
We now have to compute the weight of this stump based on the error it made in the classification

To do that we first calculate the total error of the stump as the sum of the weights of the wrongly classified data

AdaBoost

We now select the best stump using, for example, the Gini Impurity
Shadow has the smaller GI, it will be our first stump
We now have to compute the weight of this stump based on the error it made in the classification

To do that we first calculate the total error of the stump as the sum of the weights of the wrongly classified data

Since the stump made two mistakes and each data sample had the same weight t total error is

AdaBoost

We now select the best stump using, for example, the Gini Impurity
Shadow has the smaller GI, it will be our first stump
We now have to compute the weight of this stump based on the error it made in the classification

To do that we first calculate the total error of the stump as the sum of the weights of the wrongly classified data

Since the stump made two mistakes and each data sample had the same weight t total error is

$$
E_{t}=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}
$$

AdaBoost

Using the total error of the stump we can calculate its weight as

AdaBoost

Using the total error of the stump we can calculate its weight as

$$
w_{\text {stump }}=\frac{1}{2} \ln \left(\frac{1-E_{t}}{E_{t}}\right) \sim 0.54
$$

AdaBoost

Using this information we can modify the weights of the samples

AdaBoost

Using this information we can modify the weights of the samples

The idea is to give more weights to the samples that were not correctly classified

AdaBoost

Using this information we can modify the weights of the samples

The idea is to give more weights to the samples that were not correctly classified
This is done using this formula

AdaBoost

Using this information we can modify the weights of the samples

The idea is to give more weights to the samples that were not correctly classified
This is done using this formula

$$
w_{s_{i}}=s_{i} e^{w_{\text {sump }}}=\frac{1}{8} e^{0.54} \sim 0.21
$$

AdaBoost

Using this information we can modify the weights of the samples

The idea is to give more weights to the samples that were not correctly classified
This is done using this formula

$$
w_{s_{i}}=s_{i} e^{w_{\text {stump }}}=\frac{1}{8} e^{0.54} \sim 0.21
$$

We then decrease the sample weights for the correctly classified samples as

AdaBoost

Using this information we can modify the weights of the samples
The idea is to give more weights to the samples that were not correctly classified
This is done using this formula

$$
w_{s_{i}}=s_{i} e^{w_{\text {sump }}}=\frac{1}{8} e^{0.54} \sim 0.21
$$

We then decrease the sample weights for the correctly classified samples as

$$
w_{s_{i}}=s_{i} e^{-w_{\text {stump }}}=\frac{1}{8} e^{-0.54} \sim 0.07
$$

AdaBoost

Hence, we will have

| Shadow | Garlic | Complexi
 on | | Accent | Vampire |
| :--- | :--- | :--- | :--- | :--- | :--- | Weight

We need to normalize the weight!

AdaBoost

Hence, we will have

Shadow	Garlic	Complexi on		Accent	Vampire	Weight
$?$	Yes	Pale	None	No	0.25	
Yes	Yes	Ruddy	None	No	0.083	
$?$	No	Ruddy	None	Yes	0.083	
No	No	Average	Heavy	Yes	0.083	
$?$	No	Average	Odd	Yes	0.083	
Yes	No	Pale	Heavy	No	0.083	
Yes	No	Average	Heavy	No	0.083	
$?$						
	Yes	Ruddy	Odd	No	0.25	

AdaBoost

Now we can create a boostrapped version of the sample, using the weights to sampling

AdaBoost

Now we can create a boostrapped version of the sample, using the weights to sampling

This will create a dataset with over-represented samples that were not correctly Classified. Hence, the error in the initial step affect the stump in the second

AdaBoost

Now we can create a boostrapped version of the sample, using the weights to sampling

This will create a dataset with over-represented samples that were not correctly Classified. Hence, the error in the initial step affect the stump in the second

Then, we forget about the initial dataset, we set all the sample weights to zero and repeat

AdaBoost

Hence, we will have a range of stumps, each with their weight

AdaBoost

For example

$w_{\text {stump }}=0.4$
$w_{\text {stump }}=0.34$

AdaBoost

Imagine we get a new data point, stumps on the left classify it as vampire, those on the left as not a vampire. We pick the classification by summing the weights of each stump!

$$
w_{\text {stump }}=0.54
$$

$$
w_{\text {stump }}=0.6
$$

$$
w_{\text {stump }}=0.3
$$

AdaBoost

So, in this case, the data point will be classified as a vampire

$$
w_{\text {stump }}=0.54
$$

$w_{\text {stump }}=0.6$

$$
\begin{aligned}
& w_{\text {stump }}=0.4 \\
& \\
& w_{\text {stump }}=0.34
\end{aligned}
$$

$$
w_{\text {stump }}=0.3
$$

