Lecture 11B MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture

Bayesian model selection

Next week

Revision next week

- Past papers
- Extra problems for the exam

More than one model

- Let y be the observed data.
- Suppose that we have two candidate statistical models that might fit the data y, models M_1 and M_2 .
- ullet Here, we assume that one of these models generated the data y.
- Each model has a vector of parameters θ_k , k = 1, 2.
- Model selection: We are interested in testing which model M_1 or M_2 fits the data y better.

Examples of more than one model

• Data: $y = (y_1, \dots, y_n)$ (continuous).

$$M_1: y_i \sim N(0, \sigma^2), \ \theta_1 = (\sigma) \quad \text{vs} \quad M_2: \ y_i \sim N(\mu, \sigma^2), \ \theta_2 = (\mu, \sigma)$$

ullet We are interested in deciding whether or not μ is 0.

Examples of more than one model

• Regression models: $y_i \sim N(\mu_i, \sigma^2), i = 1, ..., n$, where σ is known.

$$M_1: \ \mu_i = \beta_0, \ \theta_1 = (\beta_0, \sigma) \quad \text{vs} \quad M_2: \ \mu_i = \beta_0 + \beta_1 x_{1i}, \ \theta_2 = (\beta_0, \beta_1, \sigma)$$

• We are interested in deciding whether or not β_1 is 0.

Hypothesis tests: frequentist

 In the frequentist framework, we have a null and alternative hypothesis.

$$H_0: \mu = 0 \quad H_1: \mu \neq 0$$

• Test hypotheses using p-value: Probability of statistic at least as extreme as the observed value, if H_0 is true.

Posterior probabilities

- The Bayesian framework does not use p-values.
- Probability statements are based on the posterior distribution conditional on the model M_k , k=1,2

Notation for inference in one model

Recall the Bayes' theorem

$$p(\theta \mid y) = \frac{p(\theta) p(y \mid \theta)}{p(y)}$$

ullet Conditional on the model M_k , Bayes' theorem becomes

$$p(\theta_k \mid y, \underline{M_k}) = \frac{p(\theta_k \mid \underline{M_k}) p(y \mid \theta_k, \underline{M_k})}{p(y \mid \underline{M_k})}, \quad k = 1, 2$$

where

$$p(y \mid M_j) = \int p(\theta_j \mid M_j) p(y \mid \theta_j, M_j) d\theta_j, \quad j = 1, 2$$

This is the probability of the data given model M_i is true.

Bayes Theorem. $p[\theta|y] = \frac{p[\theta|p|y|\theta)}{p[y]}$ Suppose now that the Model Mx is twe, then the Bayes Theorem $p[\theta|y] = \frac{p[\theta|p|y|\theta)}{p[y]}$ $p[\theta|y] = \frac{p[\theta|p|y|\theta)}{p[y|\theta|y|y|x]}$ $p[\theta|y] = \frac{p[\theta|x|y|y|x]}{p[y|\theta|x|y|x]}$

where Mx has parameters Ox.

Bayes' theorem among models

the litelihoud of the observed dutay given Mx is true

- The term $p(y \mid M_k)$ can be used in Bayes' theorem for looking probabilities of different models (hypotheses).
- Bayes' theorem for model M_k (hypothesis)

$$p(M_k \mid y) = \frac{p(M_k) \ p(y \mid M_k)}{p(y)}, \quad k = 1, 2$$

- $p(M_k \mid y)$ is the posterior probability that model M_k is correct given the data y.
- These probabilities add up to 1: $\sum_{k=1}^{2} p(M_k \mid y) = 1$
- \bullet This provides a Bayesian method for choosing between models M_1 and M_2

Posterior probability of each model

- ullet Hypotheses: We are testing two models: model M_1 and model M_2
- Prior probability: The probability of each model M_k , k=1,2 prior to collecting the data. In this case, we have $\rho(M_l) + \rho(M_l) = 0$

$$p(M_1)$$
 and $p(M_2)$.

- ullet Data: the result of the experiment. In this case, y.
- Likelihood: The probability of the data given model M_j is true, $p(y \mid M_j)$. In this case,

$$p(y \mid M_1)$$
 and $p(y \mid M_2)$,

where

$$p(y \mid M_j) = \int p(\theta_j \mid M_j) p(y \mid \theta_j, M_j) d\theta_j, \quad j = 1, 2$$

Posterior probability of each model

• Posterior probability: The probability of each model M_k given the data y. In this case,

$$p(M_1 \mid y)$$
 and $p(M_2 \mid y)$.

By Bayes' theorem,

$$p(M_k \mid y) = \frac{p(M_k) \ p(y \mid M_k)}{p(y)}, \quad k = 1, 2.$$

The denominator is

$$p(\mathsf{data}) = p(y) = \sum_{j=1}^{2} p(M_j) \; p(y \mid M_j).$$

Prior distribution for models

- We need to specify prior probabilities for each model, $p(M_j), \ j=1,2.$
- We could choose a discrete uniform distribution

$$p(M_j) = \frac{1}{r}, j = 1, 2.$$

(But we do not have to choose this distribution)

Two models

So, we have by Bayes' theorem,

$$p(M_k \mid y) = \frac{p(M_k) \ p(y \mid M_k)}{p(y)}, \quad k = 1, 2.$$

- Suppose we assume one of two models is correct, M_1 and M_2 .
- We want to decide which model fits the data y well.
- We choose M_1 or not depending on whether its posterior odds are greater or less than its prior odds.

Odds

- The odds of event E versus event $E^{\tt G}$ are the ratio of their probabilities $P(E)/P(E^{\tt G})$.
- So the odds of E is

$$O(E) = \frac{P(E)}{P(E^{\mathfrak{g})}}.$$

• Let
$$P(E) = p$$
 and $P(E^0) = 1 - p$, then $\Phi(E) = \frac{p}{1 - p}$.

$$O(E) = \frac{p}{1 - p} \cdot \Theta(E) = p \cdot O(E) = p \cdot O(E)$$

$$O(E) = p \cdot O(E) = p \cdot O(E) = p \cdot O(E)$$

$$O(E) = p \cdot O(E) = p \cdot O(E)$$

Odds: Examples

- For a fair coin the odds of H (heads) is O(H)=1. We say the odds of heads are 1 to 1 or 50-50.
- For a standard die, the odds of rolling 4 are $\frac{1/6}{5/6}=1/5$. We say that odds are 1 to 5 for rolling a 4.

Prior odds, posterior odds

We compute,

$$\frac{p(M_1 \mid y)}{p(M_2 \mid y)} = \frac{p(M_1) \ p(y \mid M_1)}{p(M_2) \ p(y \mid M_2)}$$

Also

$$p(M_2) = 1 - p(M_1),$$

$$p(M_2 \mid y) = 1 - p(M_1 \mid y)$$

$$p(M_1 \mid y) + p(M_2 \mid y) = 1$$

$$P(M_1|y) = \frac{P(M_1) P(y|M_2)}{P(y)}$$

$$P(M_2|y) = \frac{P(M_2) P(y|M_2)}{P(y)}$$

$$\frac{P(M_1|y)}{P(M_2|y)} = \frac{P(M_1) P(y|M_2)}{P(M_2) P(y|M_2)}$$

$$= \frac{P(M_1) P(y|M_2)}{P(M_2) P(y|M_2)}$$

Prior odds, posterior odds

• The prior odds of model M_1 vs model M_2 :

$$\frac{p(M_1)}{p(M_2)} = \frac{p(M_1)}{1 - p(M_1)}$$

• The posterior odds of model M_1 vs model M_2 :

$$\frac{p(M_1 \mid y)}{p(M_2 \mid y)} = \frac{p(M_1 \mid y)}{1 - p(M_1 \mid y)}$$

Bayes factors

Using,

$$\frac{p(M_1 \mid y)}{p(M_2 \mid y)} = \frac{p(M_1) p(y \mid M_1)}{p(M_2) p(y \mid M_2)}$$

$$\frac{p(M_1 \mid y)}{p(M_2 \mid y)} = \frac{p(M_1) p(y \mid M_1)}{p(M_2) p(y \mid M_2)}$$

 $\frac{p(M_1\mid y)}{p(M_2\mid y)} = \frac{p(M_1)\;p(y\mid M_1)}{p(M_2)\;p(y\mid M_2)}$ we have $\frac{p(M_1\mid y)}{p(M_2\mid y)} = \frac{p(M_1)\;p(y\mid M_1)}{p(M_2)\;p(y\mid M_2)}$ posterior odds of Model M_1 = prior odds of Model M_1 × $\frac{p(y\mid M_1)}{p(y\mid M_2)}$

Bayes factors

The factor

$$B_{12} = \frac{p(y \mid M_1)}{p(y \mid M_2)}$$

is called a Bayes factor.

- So the Bayes factor is the ratio of the likelihoods.
- We have:

Posterior odds of Model $M_{\scriptscriptstyle 1}=$ prior odds of Model $M_{\scriptscriptstyle 1}\times$ Bayes factor

Bayes factors

• For a hypothesis H (e.g Model M_1) versus H^0 (e.g Model M_2), the Bayes factor is

$$B_{12} = \frac{p(y \mid H)}{p(y \mid H^{\complement})}$$

• We have:

Posterior odds of H= prior odds of $H\times$ Bayes factor

Bayes factor formula

The Bayes factor is

$$B_{12} = \frac{p(y \mid M_1)}{p(y \mid M_2)}$$

$$= \frac{\int p(\theta_1 \mid M_1) p(y \mid \theta_1, M_1) d\theta_1}{\int p(\theta_2 \mid M_2) p(y \mid \theta_2, M_2) d\theta_2}$$

• $p(\theta_k \mid M_k)$ and $p(y \mid \theta_k, M_k)$ are the prior and likelihood for model M_k .

Bayes factors and strength of evidence

Posterior odds of Model $M_{\scriptscriptstyle 1}=$ prior odds of Model $M_{\scriptscriptstyle 1}\times$ Bayes factor

- ullet The Bayes factor tells us whether the data provides evidence for or against Model M_1 (hypothesis)
 - Bayes factor $B_{12} > 1$ suggests the posterior odds are greater than the prior odds. So the data provides evidence for model M_1 (hypothesis). Model M_1 is more probable.
 - Bayes factor $B_{12} < 1$ suggests the posterior odds are less than the prior odds. So the data provides evidence against model M_1 (hypothesis). Model M_2 is more probable.
 - If $B_{12} = 1$ then the prior and posterior odds are equal. So the data provides no evidence either way.

Bayes factors and strength of evidence

- Rules of thumb for the size of the Bayes factor have been suggested
 no need to remember these.
- E.g.:

 $\begin{array}{lll} \mbox{Range of B_{12}} & \mbox{Evidence} \\ 1 \mbox{ to } 10^{-\frac{1}{2}} & \mbox{slight evidence against M_1} \\ 10^{-\frac{1}{2}} \mbox{ to } 10^{-1} & \mbox{moderate evidence against M_1} \\ 10^{-1} \mbox{ to } 10^{-2} & \mbox{strong evidence against M_1} \\ < 10^{-2} & \mbox{decisive evidence against M_1} \end{array}$

Example

N:ア

- We flip a coin 5 times and observe k=5 heads. We want to know if the coin is fair, or if it is biased towards heads. Let q be the probability of success.
- ullet Let be two models M_1 and M_2

$$M_1: k \sim \mathsf{binomial}(5, 0.5), \quad M_2: k \sim \mathsf{binomial}(5, q).$$

ullet We will use the Bayes factor to choose between Models M_1 and M_2 .

Example: By detinition the Boyes factor, B12, of Model M1 vs Model Ma is B12 = $\frac{P(x|M_i)}{P(x|M_a)}$, where $\rho(x|M_1) = \int \rho(z|M_1) \rho(x|z, M_1) dz$ $\rho(x|Ma) = \int \rho(z|Ma)\rho(x|z,Ma) dz$ Model M1, there are no parameteus

Since 2 = 0.5. Therefore, there are no
parameteus to integrate over. So,

parameteus to integrate over. So,

p(x/M1) = (n/0.7) x (0.5) n-x (n=x) $=(0.5)^{N}(0.5)^{0}=(0.5)^{N}=(0.5)^{S}$ o(x/e, Ma) is the published of x successes under Mo and giran the pubability of success is 2 p(x/e, Ma) = (n) 22 (1-2) n-x = 2 (n=x)

p(2/M2) 15 the prior of 2 under area Model M2. We con assume p(2/M2)-beta(1,1) $p(x|Ma) = \int p(z|Ma) p(x|z,Ma) dz$ $= \int_{0}^{\infty} 1 \cdot 2^{n} d2 = \int_{0}^{\infty} 2^{n} d2 = \frac{1}{n+1}$ Thus, the Bayes factor is $B7R = \frac{\rho(x/M_1)}{\rho(x/M_0)} = \frac{(0.5)^n}{(n+1)} = \frac{(n+1)(0.5)^n}{(n+1)}$ SINCE N=51 B12=0.1875<1 we conclude that model Mais more probab

Sensitivity to prior

- Suppose that model M_1 has a single parameter $\theta_1 \in \mathbb{R}$.
- Prior distribution $\theta_1 \sim N(0, \sigma_0^2)$.

$$p(y \mid M_1) = \int p(\theta_1 \mid M_1) p(y \mid \theta_1, M_1) d\theta_1$$

- In typical problems, the likelihood $p(y \mid \theta_1, M_1)$ approaches zero for θ_1 outside some range (-A, A).
- For large enough σ_0

$$p(\theta_1 \mid M_1) = \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\theta_1^2/(2\sigma_0^2)} \approx \frac{1}{\sqrt{2\pi}\sigma_0} \text{ for } -A < \theta_1 < A$$

Sensitivity to prior

• Hence for large enough σ_0 (flat, uninformative prior for θ_1), the Bayes factor is

$$B_{12} \approx \frac{1}{\sqrt{2\pi}\sigma_0} \frac{\int p(y \mid \theta_1, M_1) d\theta_1}{\int p(\theta_2 \mid M_2) p(y \mid \theta_2, M_2) d\theta_2}$$

- So if e.g. we replace a very large σ_0 by $100 \sigma_0$, then B_{12} is divided by 100.
- However, the posterior distribution within model M_1 will hardly change, as the posterior is approximately proportional to the likelihood for large σ_0 .

Alternative approaches to model comparison

- Using Bayes factors and posterior probabilities of models can depend on the prior distributions, more so than inference within each model.
- There are alternatives for checking or comparing models which combine Bayesian and frequentist ideas.
- E.g. posterior predictive checks.
- We are not covering these.

More flexible model

- An alternative is: don't choose among models.
- Expand one model to make it flexible enough.
- Models with many parameters can be easier to deal with in the Bayesian framework:
 - conceptually, can go from joint posterior to marginal posterior distribution;
 - having slightly informative prior distributions helps if there is not enough data to estimate all parameters.