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Today's lecture

@ Bayesian model selection
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Revision next week

@ Past papers

@ Extra problems for the exam
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More than one model

@ Let y be the observed data.

@ Suppose that we have two candidate statistical models that might fit
the data y, models M and Ms.

@ Here, we assume that one of these models generated the data y.

@ Each model has a vector of parameters 6;., kK =1, 2.

@ Model selection: We are interested in testing which model M, or
M, fits the data y better.
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-f more than one model

o Data: y = (y1,...,¥yn) (continuous).
M : y; ~ N(0,0°), 0, =(0) vs Msy: y; ~N(u,0%), 03 = (u,0)

@ We are interested in deciding whether or not p is 0.
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-s of more than one model

o Regression models: y; ~ N(u;,02),i=1,...,n, where ¢ is known.

My : wi = Bo, 61 =(Bo,0) vs Ma: u; = pPo+ fix1i, 02 = (Bo, P1,0)

@ We are interested in deciding whether or not 3, is 0.

E. Solea, QMUL MTHG6102: Bayesian Statistical Methods



Hypothesis tests: frequentist

@ In the frequentist framework, we have a null and alternative
hypothesis.

H()I,u:o Hl,u#()

@ Test hypotheses using p-value: Probability of statistic at least as
extreme as the observed value, if Hy is true.
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- probabilities

@ The Bayesian framework does not use p-values.

@ Probability statements are based on the posterior distribution
conditional on the model M,, k=1, 2
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Notation for inference in one model

@ Recall the Bayes' theorem

p(0) p(y | 0)
p(y)

p(0|y) =

@ Conditional on the model M}, Bayes' theorem becomes

p(Or | M) p(y | Ox, My,)
p(y | My) 7

p(Ok | y, My) = k=1,2

where
ply | M;) = /p(9j | M) p(y | 05, M;) dO;, 5 =1,2

This is the probability of the data given model M is true.
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Bayes' theorem among models

Je. dbserved dita
He ! rga!g\aw%jfw ue )

o The teran be used in Bayes’ theorem for looking
probabilities of different models (hypotheses).
— e —S———

o Bayes' theorem for model M, (hypothesis)

B |y = PV ply | M)

e p(fU)

k=12

@ p(My, | y) is the posterior probability that model Mj, is correct given
the data y.

@ These probabilities add up to 1: Zzzlp(Mk ly) =1

@ This provides a Bayesian method for choosing between models M,
and M,
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Posterior probability of each model

@ Hypotheses: We are testing two models: model M, and model M,
@ Prior probability: The probability of each model M,, £k = 1,2 prior

to collecting the data. In this case, we have F(,H‘) +P//%~] =)

p(Ml) and p(Mg).

@ Data: the result of the experiment. In this case, .

o Likelihood: The probability of the data given model M is true,
p(y | M;). In this case,

p(y | My) and p(y | M),

where

ply | M;) = /p(Qj | M;) p(y | 05, M;) dO;, 5 =1,2
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Posterior probability of each model

@ Posterior probability: The probability of each model M, given the
data y. In this case,

p(My|y) and p(Mz|y).
o By Bayes' theorem,

(My) p(y | My)

p
p(My |y) = , k=1,2.
(M | 9) p(y)
@ The denominator is
2
p(data) = p(y) = > p(M;) p(y | M;).
j=1
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-istribution for models

@ We need to specify prior probabilities for each model,
p(Mj>, ] = 1,2

@ We could choose a discrete uniform distribution

o (But we do not have to choose this istr)bution)

(M) = o oo/ PMQ ~1~Q_
{O W@mrg

oy Vo
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Two models

So, we have by Bayes' theorem,

p(My) p(y | My)

p(My | y) = ()

k=12

@ Suppose we assume one of two models is correct, M; and M.

@ We want to decide which model fits the data y well.

@ We choose M, or not depending on whether its posterior odds are
greater or less than its prior odds.
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@ The odds of event E versus event E° are the ratio of their
probabilities P(F)/P(E").

@ So the odds of F is

P(E)
P(E®

O(F) =

o Let P(E)=pand P(E®) =1 —p, then Q(F) = &

olE \ £ e con solve fov . =

P o(E (E]
o(E) (¢ =p © o((f)l HO(E{D@P“LZOCE)
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-:Examples

@ For a fair coin the odds of H (heads) is O(H) = 1. We say the odds
of heads are 1 to 1 or 50-50.

@ For a standard die, the odds of rolling 4 are % = 1/5. We say that

odds are 1 to 5 for rolling a 4.
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_posterior odds

p( M4 (M) = |

@ We compute,

o Also

G150,
p(M2|y)=1—p(M |y)
CP(MI ) P[MBB)
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-s, posterior odds

@ The prior odds of model M; vs model Ms:

p(My) _ p(Mi)
p(Mz) 1—p(M)

@ The posterior odds of model M7 vs model Ms:

p(Mily) _ p(Mi|y)
p(Mz|y) 1—p(Mi|y)
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o

@ Using,
) p(My |y) _ p(Mi) p(y | M)
(Ma | y)  p(Mz) p(y | Ma)
)
we have OUS (_OYb/d(MJ
sl G el
posterior odds oﬁﬂsﬂel M, :lprior odds of Model M, x gg : %1;
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-s factors

@ T[he factor

is called a Bayes factor.

@ So the Bayes factor is the ratio of the likelihoods.

@ We have:

Posterior odds of Model M, = prior odds of Model M, x Bayes
factor
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o For a hypothesis H (e.g Model M,) versus H® (e.g Model M,), the

Bayes factor is
_ ply | H)

- ply | H®)

B12

@ We have:

Posterior odds of H = prior odds of H x Bayes factor
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-ctor formula

@ The Bayes factor is

- ply | My)
B =)
_ o601 | My) ply | 61, M) db
[ (02| M) p(y | 2, M) db;

o p(fx | My) and p(y | Ok, My) are the prior and likelihood for model
M, .
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Bayes factors and strength of evidence

Posterior odds of Model M, = prior odds of Model M, x Bayes factor

@ The Bayes factor tells us whether the data provides evidence for or
against Model M, (hypothesis)

o Bayes factor Bis > 1 suggests the posterior odds are greater than
the prior odds. So the data provides evidence for model M,
(hypothesis) Model M; is more probable.

Dayes factor B12 < 1 suggests the posterlor odds are less than the
“prior odds. So the data provides evidence against model M1

“(hypothesis). Model M5 is more probable.
o If B1s = 1 then the prior and posterior odds are equal. So the data
provides no evidence either way.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Bayes factors and strength of evidence

@ Rules of thumb for the size of the Bayes factor have been suggested
- no need to remember these.

o E.g.:

Range of B1s  Evidence

1to 10~z slight evidence against M,
1072 to 107!  moderate evidence against M
10~! to 1072  strong evidence against M;
<1072 decisive evidence against M,
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Example

N=x-

@ We flip a coin 5 times and observe £ = 5 heads. We want to know if

the coin is fair, or if it is biased towards heads. Let q be the
probability of success.

o Let be two models M, and M,

M, : k ~ binomial(5,0.5), M, : k ~ binomial(5, q). Z>0§

@ We will use the Bayes factor to choose between Models M, and M,.
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Sensitivity to prior

@ Suppose that model M; has a single parameter 6; € R.
@ Prior distribution 61 ~ N(0,03).

p(y | My) = /p(91 | M1) p(y | 01, My) db,

@ In typical problems, the likelihood p(y | 61, M7) approaches zero for
61 outside some range (—A, A).

@ For large enough oy

1 2 2 1
O M) = 6_91/(200) ~
p(0r | My) N N

for —A<0; < A
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Sensitivity to prior

@ Hence for large enough o (flat, uninformative prior for 6;), the
Bayes factor is

1 oy | 61, M) do,
V2rag | p(02 | M) p(y | 02, Ma) dbs

@ So if e.g. we replace a very large oy by 100 oy, then Bq5 is divided
by 100.

@ However, the posterior distribution within model M5 will hardly
change, as the posterior is approximately proportional to the
likelihood for large oy.

BlQ ~
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Alternative approaches to model comparison

@ Using Bayes factors and posterior probabilities of models can depend
on the prior distributions, more so than inference within each model.

@ There are alternatives for checking or comparing models which
combine Bayesian and frequentist ideas.

@ E.g. posterior predictive checks.

@ We are not covering these.
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More flexible model

@ An alternative is: don't choose among models.
@ Expand one model to make it flexible enough.

@ Models with many parameters can be easier to deal with in the
Bayesian framework:

o conceptually, can go from joint posterior to marginal posterior
distribution;

o having slightly informative prior distributions helps if there is not
enough data to estimate all parameters.
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