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Today's lecture

@ Learn how to use the law of total probability to compute posterior
predictive probabilities.
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Review: Predictive probabilities

@ Posterior predictive probability describes how likely are different
outcomes of a future experiment.

@ We have observed data (result of the experiment) y ~ p(y | 0),
dependent on parameters 6.

@ Then we update our prior distribution for €, p(6), to the posterior
distribution p(0 | y).
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Posterior predictive probabilities

@ Suppose we plan to perform the experiment again to observe new
data z

@ We want to compute the posterior predictive distribution p(z | y) of
x given the observed data y.

@ Posterior predictive probabilities are used to predict future data x
when the experiment is performed again, and they are computed
after obsevring data y and updating prior to posterior.
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Predictive distributions: discrete prior, discrete data

Discrete observed data: y ~ p(y | 8), with 6 unknown
Discrete likelihood: p(y | 6).

Discrete hypothesis 6 with values 6,, 6,, ... 0.

Prior pmf p(0,) of 0, p(0,) =p(6 =6,),i=1,..., K.

Posterior pmf p(0, | y) = p<y|zég)f)’(0i), i=1,...,K.

© 6 6 o ¢

Hypothesis | prior likelihood Bayes numerator | posterior
0 p(9) | p(ylf) p(y10)p(0) p(9ly)

0, p(6,) | p(yl6:) p(yl6:) p(6) p(6:ly)
0, p(6:) | p(ylf:) p(yl0:) p(6-) p(6:y)

0 x p(0x) | p(ylOx) p(y|0x) p(0x) p(Ox|y)
Total 1 NOT SUM TO 1 | p(y) 1
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Predictive distributions: discrete prior, discrete data

o By the Law of total probability,

p(y) =Y _p(yl6:)p(6,),

is called the prior predictive probability.

@ Prior predictive probabilities. Assign a probability to an outcome of
the experiment. They are computed before we observe any data.
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Predictive distributions: discrete prior, discrete data

o Let x: future data from the same experiment. We assume tha)t x

and y are independent given 0. P (X' [3( VARS p K 6

o By, the law of total probability, the posterior predictive probability
of = given the observed data y is

plzly) = Zp
p(Xl‘is) :Z( p[xl@(ﬁ p/@c.fﬁ)
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Board example: Three type of coins

There are three type of coins in the drawer with probabilities 0.5, 0.6 and
0.9 of heads, respectively. Each coin is equally likely

Data: Pick one and toss 5 times. You get 1 head out of 5 tosses.

(a) Compute the posterior probabilities for the type of coin

(b) Compute the posterior predictive distributions of observing heads in
a future toss.

(c) Compute the posterior predictive distributions of observing 2 heads
in 5 future coin tosses.
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Board example: Three type of coins

o Bayesian updating table

Hypothesis | prior likelihood Bayes numerator posterior

g p(0) p(y]6) ~ binomial(5,6) | p(y[6)p(d) p(6ly)

0, =0.5 p(0,) =1/3 | p(y =1|0,) =0.15625 | p(y = 1]6,) p(6,) = 0.0521 | p(0,|ly =1) = 0.669
6, =0.6 p(0,) =1/3 | p(y =1]6,) =0.0768 | p(y = 1]6,) p(f,) = 0.0256 | p(f,|ly = 1) = 0.329
0; =0.9 p(0;) =1/3 | p(y = 1|0;) = 0.00045 | p(y = 1|0;) p(6;) = 0.00015 | p(f;ly = 1) = 0.00193
Total 1 NOT SUM TO 1 p(y=1)=0.07785 1

@ Prior predictive probability: p(y = 1) = p(y = 1|0,)p(6,) + p(y =
1165)p(65) + p(y = 1]05)p(6;) = 0.07785
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Board example: Three type of coins

@ Does the order of the 1 head and 4 tails affect the posterior
distribution of the coin type?

Yes

@No

@ Does the order of the 1 head and 4 tails affect the posterior
predictive distribution of the next flip?

a) Yes
o2
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Board example

@ Suppose that y is the number of expensive goods in a shop over 24
days. So(’~ Poisson(240There § = 1/2, 6 = 1/4 or § = 1/8.

@ Suppose the prior pmf is

p(0 =1/2) =p(1/2) =0.2, p(0=1/4)=p(1/4) =05,
p(@ =1/8) =p(1/8) =0.3.

o We observgz 10 expe‘nsive good@vere sold in the last 24 days.

@ Compute the posterior pmf for 6.
@ Compute the posterior predictive distribution that x+ = 10 number of
goods will be sold in the next 24 days.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



The lite
(Celihowd n dhe Caee tS
PQBT“O(@} _ (yo)" 246

— (

(o |




Predictive distributions: continuous prior, discrete data

o Continuous parameter 6 in the range |a, b].
@ Prior: p(0), 0 € [a,b].
o Discrete data, y. Likelihood p(y|6).

o By, the law of total probability, the prior predictive probability of y
IS

pldata) = p(s) = | p(y16) p(6) do,

—

where the integral is computed over the entire range of 6.

@ Note: p(y) is a probability mass function, i.e., p(y) = P(Y = y)
Stwu oy Plyl= i P(B[QC]P(Qel
C =
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Predictive distributions: continuous prior, discrete data

o Posterior: p(0ly) =

__ p(0)xp(y|o)
p(y)

@ x: future data of the same experiment. We assume that x and y are
independent given 6

o By, the law of total probability, the posterior predictive probability
of x (given y) is

plxly) =

plaly) = [ p(al9) p(oly) i

J

E. Solea, QMUL
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Predictive distributions: continuous prior, discrete data

Example

We have a coin with unknown probability 6 of heads' 8@: ['0113,

Prior: p(0) = 26, 6 € [0, 1].
T

o Find the prior predictive probability of throwing heads on the first
toss.

@ Suppose the first flip was heads. Find the posterior predictive

probabilities of both heads and tails on the second flip.
———
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Example: beta prior/ binomial data

o Data, k ~ binomial(n, q)

@ Prior, ¢ ~ beta(a, B).

o Find the posterior predictive probability to observe success on the

next Bernoulli trial.
@ Find the posterior predictive probability to observe new x successes

on the next m Bernoulli trials.
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Data: 10 patients have 6 successes. 6 ~ beta(5,5)

o Find the posterior distribution of 6.

@ Find the posterior predictive probability of success with the next
patient.
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Posterior predictive distribution: continuous prior,
continuous data

Continuous parameter 6 in the range |a, b].
Prior pdf: p(6), 0 € [a,b].
Continuous data, y. Likelihood p(y|6).

© 6 o ¢

The prior predictive pdf of y is

o) = [ p(y16) p(6) do,

where the integral is computed over the entire range of 6.

o Note: p(y) is a pdf.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Posterior predictive distribution: continuous prior,
continuous data

o Posterior pdf: p(6|y)

@ x: future data of the same experiment.

@ The posterior predictive distribution of x is

plaly) = [ plely. 0)p(0ly) o

@ As usual, we usually assume = and y are conditionally independent

given 0. That is, p(x Z, 0) = p(z|0).

@ In this case,
- [ bp<xe>@

MTH6102: Bayesian Statistical Methods
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Posterior predictive distribution

The posterior predictive distribution for x given the observed data v is

p<x|y>=/p<xw>p<9|y>d9

@ This is the probability distribution for unobserved or future data x.

@ This distribution includes two types of uncertainty:

o the uncertainty remaining about 6 after we have seen y;
o the random variation in .

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Board example: Exponential data/Gamma prior

@ The time until failure for a type of light bulb is exponentially
distributed with parameter 8 > 0, where 6 is unknown.

@ We observe n bulbs, with failure times ¢1,...,%,. (_LN@]QP [9)

@ We assume a Gamma(a, ) prior distribution for 6, where o > 0 and
B > 0 are known.

@ Determine the predictive posterior distribution for future data x
Cp—-

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Sok;ﬁ;o‘/\
é_ (S(),Q-Q 'll.IT— ('61/ -)‘éV\) /Q/I/W/C lf@Lf) éc"*éxpm), 8>0

obsevve

Since, Gomma (006) 1S conyugale b e egopentiad

W\ & ( e, pasdexov oA B gquon e antn N
(U}hevc Sz %65

plolH~ Gowea (050 84 S)

r(5)
_@" $H01 o - (r+8le) db
(4] A,
R}
X\, GO\N\\N\QC@&G) OD%L@Q
R 4 le -0 J;( _ 1
jﬁﬂﬁﬂdﬁzqqg A e -
0 _\_6/0‘: ad R ([
= (c&\go ¢ ok=T



é)j A
Q/;iﬁ?,
X = J—_L
6&&)

VS
NS ’
& © buk
B dbmba
ocAé(L
Xw wn A
| I
\

g
£o gex
(6]

o (1l6)=—"=
)(T
2
F(a Gt
) @M)mﬂ




Finding the posterior predictive distribution

p<w|y>=/p<x\e>p<9|y>de

@ In conjugate examples, one can usually derive p(x | y).

o It is generally easier to find the mean and variance of p(x | ) than
deriving the full distribution.
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Conditional mean and variance in general

@ Suppose that X and W are general random variables.

@ Then
E(X) = E(@) law of iterated expectation

Var(X) = Var(E(X | W)) + E(Var(X | W)) law of total variance

and

@ In Bayesian inference, we replace W with parameters and X with
the new data we would like to predict.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods
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-ariance of posterior predictive distribution

@ For new data x and parameter(s) 6

Var(x) =Var(E(x | 0))+ E(Var(x | 9))

J (xly )< R (=l
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Mean and variance of posterior predictive distribution

@ Add conditioning on observed data y, since we want posterior
predictions

E(x|y)=FE(E(x|0,y)) )law of iterated expectation

—>Var(z | %) = Var(E(x | H,y))—l—E(Var(:c | H,Iy)) law of total variance
/

@ These are the posterior predictive mean and posterior predictive
— ~— _

variance of :r;,ﬁrespectively.

—_—

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Becaye X oné Yy o méepenéu\% Iuon §

ﬂexw [ ] = buo (vlo)

= (rlygel = = = (l )
Vov(ml}_m ) < vov (18]



-: beta prior, binomial data

o Data, k ~ binomial(n, q)
@ Prior, g ~ beta(a, ).

@ New data, x ~ binomial(m, ¢q), m is known.

.& T ——

(1) Find the posterior predictive mean and variance of z

E. Solea, QMUL MTHG6102: Bayesian Statistical Methods
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Using simulation (Monte Carlo)

@ Suppose we know the posterior distribution p(6 | i), or we have a
sample from it.

@ Then it is easy to use simulation to generate a sample from the
posterior predictive distribution of a new data-point z.

o Because we know the distribution of x for any given value of 6: it's
the same as the distribution of the original data y.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Simulating the posterior predictive distribution

@ Suppose that we have a sample from the posterior distribution
917927'“791\4

@ We can simulate the posterior predictive distribution p(x | y).

@ We just generate
z; fromp(x | 0;,y) =plx|0;), 7=1,2,...,M

@ Then
L1y, L2y LM\[
is a sample from the posterior predictive distribution p(x | y).

@ (Since
(331791)7 (332782)7 RIS (CCM,HM)

is a sample from p(x,0 | y) = p(0 | y) p(x | 6,y)).

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Simulating the posterior predictive distribution

@ When do we have a sample from p(f | y)?
@ Almost always, because we use MCMC to make inferences about 6.

@ Or in simpler conjugate cases, we can directly generate an
independent sample from p(4 | y).

@ The latter is an example of simple Monte Carlo.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Using the the posterior predictive sample

@ Suppose we have generated a sample from the posterior predictive
distribution x1, 29, ..., 2.
@ We can summarize the sample for whatever interests us:

o Posterior predictive mean, median, variance - just summarize sample
L1y L2y...3TM

o Prediction intervals, e.g. with 95% probability, = will be in some
interval- just take the 0.025 and 0.975 sample quantiles of the
sample x1,x2,..., 2.

o Posterior predictive probability that £ = 0 - just count what
proportion of sample are 0.

o Posterior predictive probability that « > ¢, for some ¢ - count what
proportion of sample are > c.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



