Lecture 11A
 MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture

- Learn how to use the law of total probability to compute posterior predictive probabilities.

Review: Predictive probabilities

- Posterior predictive probability describes how likely are different outcomes of a future experiment.
- We have observed data (result of the experiment) $y \sim p(y \mid \theta)$, dependent on parameters θ.
- Then we update our prior distribution for $\theta, p(\theta)$, to the posterior distribution $p(\theta \mid y)$.

Posterior predictive probabilities

- Suppose we plan to perform the experiment again to observe new data x
- We want to compute the posterior predictive distribution $p(x \mid y)$ of x given the observed data y.
- Posterior predictive probabilities are used to predict future data x when the experiment is performed again, and they are computed after obsevring data y and updating prior to posterior.

Predictive distributions: discrete prior, discrete data

- Discrete observed data: $y \sim p(y \mid \theta)$, with θ unknown
- Discrete likelihood: $p(y \mid \theta)$.
- Discrete hypothesis θ with values $\theta_{1}, \theta_{2}, \ldots \theta_{K}$.
- Prior pmf $p\left(\theta_{i}\right)$ of $\theta, p\left(\theta_{i}\right)=p\left(\theta=\theta_{i}\right), i=1, \ldots, K$.
- Posterior pmf $p\left(\theta_{i} \mid y\right)=\frac{p\left(y \mid \theta_{i}\right) p\left(\theta_{i}\right)}{p(y)}, i=1, \ldots, K$.

Hypothesis	prior	likelihood	Bayes numerator	posterior
θ	$p(\theta)$	$p(y \mid \theta)$	$p(y \mid \theta) p(\theta)$	$p(\theta \mid y)$
θ_{1}	$p\left(\theta_{1}\right)$	$p\left(y \mid \theta_{1}\right)$	$p\left(y \mid \theta_{1}\right) p\left(\theta_{1}\right)$	$p\left(\theta_{1} \mid y\right)$
θ_{2}	$p\left(\theta_{2}\right)$	$p\left(y \mid \theta_{2}\right)$	$p\left(y \mid \theta_{2}\right) p\left(\theta_{2}\right)$	$p\left(\theta_{2} \mid y\right)$
\vdots	\vdots	\vdots	\vdots	\vdots
θ_{K}	$p\left(\theta_{K}\right)$	$p\left(y \mid \theta_{K}\right)$	$p\left(y \mid \theta_{K}\right) p\left(\theta_{K}\right)$	$p\left(\theta_{K} \mid y\right)$
Total	1	NOT SUM TO 1	$p(y)$	1

Predictive distributions: discrete prior, discrete data

- By the Law of total probability,

$$
p(y)=\sum_{i=1}^{K} p\left(y \mid \theta_{i}\right) p\left(\theta_{i}\right),
$$

is called the prior predictive probability.

- Prior predictive probabilities. Assign a probability to an outcome of the experiment. They are computed before we observe any data.

Predictive distributions: discrete prior, discrete data

- Let x : future data from the same experiment. We assume that x and y are independent given $\theta . \quad \rho(x \mid y, \theta)=\rho(x \mid \theta)$
- By, the law of total probability, the posterior predictive probability of x given the observed data y is

$$
\begin{gathered}
p(x \mid y)=\sum_{i=1}^{K} p\left(x \mid \theta_{i}\right) p\left(\theta_{i} \mid y\right) . \\
\rho(\boldsymbol{x} \mid \boldsymbol{y})=\sum_{i=1}^{K} \rho\left(\boldsymbol{x} \mid \theta_{i} \boldsymbol{\chi}\right) \rho\left(\theta_{i} \mid \boldsymbol{y}\right)
\end{gathered}
$$

Board example: Three type of coins

There are three type of coins in the drawer with probabilities $0.5,0.6$ and 0.9 of heads, respectively. Each coin is equally likely

Data: Pick one and toss 5 times. You get 1 head out of 5 tosses.
(a) Compute the posterior probabilities for the type of coin
(b) Compute the posterior predictive distributions of observing heads in a future toss.
(c) Compute the posterior predictive distributions of observing 2 heads in 5 future coin tosses.

- new data $x=1$. The posterior predictive probability
- new data: $x=2$ heads out of 5 tosses.

$$
\begin{aligned}
& \rho(x=2 \mid y=1)=\sum_{\theta \in\{0.510 .010 .9]} \rho(x=2 \mid \theta) \rho(\theta \mid y=1) \\
& =\rho(x=2|\theta=0.5| \rho \theta=0.5 \mid y=1)+\rho(x=2(\theta=0.6) \rho(\theta=0.6 \mid y=1) \\
& \text { Gnomial } \rho w b .
\end{aligned}
$$

$$
+\rho(x=2(\theta=0-4) \rho(\theta=0.9(y=1)
$$ binomial pub.

$$
\begin{aligned}
& p(x=2 \mid \theta)=\binom{5}{2} \theta^{2}(1-\theta)^{3} \quad \theta \in[0.510 .610 .9\} \\
& =\binom{0}{2} 0.1^{2}\left(0.51^{3}(0.669)+\binom{5}{2} 0.6^{2}(0.4)^{3}(0.329)\right. \\
& f\binom{5}{2} 0.9^{2}(0.1)^{3}(0.002)=0.28
\end{aligned}
$$

$$
\begin{aligned}
& \text { is } \\
& \rho(x=1 \mid y=1)=\sum_{\theta \in\{0.510 .6,0.9\}} \rho(x=1 \mid \theta) \rho(\theta \mid y=1) \\
& =\rho(x=1 \mid \theta=0.5) \rho(\theta=0.5(y=1)+\rho(x=1 \mid \theta=0.6) \rho(\theta=0.6 \mid y=1) \\
& +\rho(x=1(\theta=0.9) \rho(\theta=0.9(y=1) \\
& =0.5(0.669)+0.6(0.329)+0.9(0.002) \\
& =0.46634 \approx 0.5 \quad-n=1, x=1 \sim \operatorname{binamical}(1, \theta) \\
& p(x=1 \mid \theta)=\binom{1}{1} \theta^{1}(1-\theta)^{1-1}=\theta
\end{aligned}
$$

Board example: Three type of coins

- Bayesian updating table

Hypothesis	prior	likelihood	Bayes numerator	posterior
θ	$p(\theta)$	$p(y \mid \theta) \sim$ binomial $(5, \theta)$	$p(y \mid \theta) p(\theta)$	$p(\theta \mid y)$
$\theta_{1}=0.5$	$p\left(\theta_{1}\right)=1 / 3$	$p\left(y=1 \mid \theta_{1}\right)=0.15625$	$p\left(y=1 \mid \theta_{1}\right) p\left(\theta_{1}\right)=0.0521$	$p\left(\theta_{1} \mid y=1\right)=0.669$
$\theta_{2}=0.6$	$p\left(\theta_{2}\right)=1 / 3$	$p\left(y=1 \mid \theta_{2}\right)=0.0768$	$p\left(y=1 \mid \theta_{2}\right) p\left(\theta_{2}\right)=0.0256$	$p\left(\theta_{2} \mid y=1\right)=0.329$
$\theta_{3}=0.9$	$p\left(\theta_{3}\right)=1 / 3$	$p\left(y=1 \mid \theta_{3}\right)=0.00045$	$p\left(y=1 \mid \theta_{3}\right) p\left(\theta_{3}\right)=0.00015$	$p\left(\theta_{3} \mid y=1\right)=0.00193$
Total	1	NOT SUM TO 1	$p(y=1)=0.07785$	1

- Prior predictive probability: $p(y=1)=p\left(y=1 \mid \theta_{1}\right) p\left(\theta_{1}\right)+p(y=$ $\left.1 \mid \theta_{2}\right) p\left(\theta_{2}\right)+p\left(y=1 \mid \theta_{3}\right) p\left(\theta_{3}\right)=0.07785$

Board example: Three type of coins

- Does the order of the 1 head and 4 tails affect the posterior distribution of the coin type?
(a) Yes
(*D) No.
- Does the order of the 1 head and 4 tails affect the posterior predictive distribution of the next flip?
(a) Yes
(b) No.

Board example

- Suppose that y is the number of expensive goods in a shop over 24 days. So $2 \sim$ Poisson (24 $)$ where $\theta=1 / 2, \theta=1 / 4$ or $\theta=1 / 8$.
- Suppose the prior pmf is

$$
\begin{gathered}
p(\theta=1 / 2)=p(1 / 2)=0.2, \quad p(\theta=1 / 4)=p(1 / 4)=0.5, \\
p(\theta=1 / 8)=p(1 / 8)=0.3 .
\end{gathered}
$$

- We observ $y=10$ expensive goods vere sold in the last 24 days.
(1) Compute the posterior pmf for θ.
(2) Compute the posterior predictive distribution that $x=10$ number of goods will be sold in the next 24 days.

The likelihood in this care is

$$
\rho|y=10| \theta \left\lvert\,=\frac{(24 \theta)^{10} e^{-24 \theta}}{10!}\right., \theta \in\left\{0.5,0.25, \frac{1}{8}\right\}
$$

Predictive distributions: continuous prior, discrete data

- Continuous parameter θ in the range $[a, b]$.
- Prior: $p(\theta), \theta \in[a, b]$.
- Discrete data, y. Likelihood $p(y \mid \theta)$.
- By, the law of total probability, the prior predictive probability of y is

$$
p(\text { data })=p(y)=\int_{a}^{b} p(y \mid \theta) p(\theta) d \theta
$$

where the integral is computed over the entire range of θ.

- Note: $p(y)$ is a probability mass function, i.e., $p(y)=P(Y=y)$

$$
\rho(y)=\sum_{i=1}^{k} \rho\left(y \mid \theta_{i}\right) \rho\left(\theta_{i}\right)
$$

Predictive distributions: continuous prior, discrete data

- Posterior: $p(\theta \mid y)=\frac{p(\theta) \times p(y \mid \theta)}{p(y)}$
- x : future data of the same experiment. We assume that x and y are independent given θ
- By, the law of total probability, the posterior predictive probability of x (given y) is

$$
p(x \mid y)=\int_{a}^{b} p(x \mid \theta) p(\theta \mid y) d \theta .
$$

$$
p(x \mid y)=\int \rho(x|\theta| y) \rho(\theta \mid y) d \theta
$$

Predictive distributions: continuous prior, discrete data

Example

We have a coin with unknown probability θ of heads, $\partial \in[0,1]$. Prior: $p(\theta)=2 \theta, \theta \in[0,1]$.

- Find the prior predictive probability of throwing heads on the first toss.
- Suppose the first flip was heads. Find the posterior predictive probabilities of both heads and tails on the second flip.

Solution

- Let y be the result of the first toss.

$$
\begin{aligned}
\rho(y=1) & =\int_{0}^{1} \rho(y=1 \mid \theta) \rho(\theta) d \theta \\
& =\int_{0}^{1} \theta \cdot(2 \theta) d \theta=\frac{2}{3}
\end{aligned}
$$

- Data $y=1$ (first flip was heads). Firstiwe need to compute the posterior $\rho d f(\rho(\theta \mid y=1)$.

$$
\rho(\theta \mid y=1)=\frac{\rho(\theta) \times \rho|y=1| \theta \mid}{\rho(y=1)}=\frac{(2 \theta) \cdot \theta}{2 / 3}=3 \theta^{2}
$$

By Bayes I Theorem,

Let x be the result of the second flip. Then,

$$
\begin{aligned}
\rho(x=1 \mid y=1) & =\int_{0}^{1} \rho(x=1 \mid \theta) \rho(\theta \mid y=1) d \theta \\
& =\int_{0}^{1} \theta\left(3 \theta^{\theta}\right) d \theta=\frac{3}{4}
\end{aligned}
$$

Example: beta prior/ binomial data

- Data, $k \sim \operatorname{binomial}(n, q)$
- Prior, $q \sim \operatorname{beta}(\alpha, \beta)$.
- Find the posterior predictive probability to observe success on the next Bernoulli trial.
- Find the posterior predictive probability to observe new x successes on the next m Bernoulli trials.

Solution
First, the posterior $\rho d f$ of q given the data x is

$$
p(\varepsilon \mid x) \sim \operatorname{beta}(a+x, \theta+n-x)
$$

The posterior, predictive distribution of x gran x is

$$
p(x \mid x)=\int_{0} p(x \mid q) p(q \mid x) d q
$$

Now,

$$
\begin{aligned}
& \omega_{1}(x \mid q)=\binom{m}{x} q^{x}(1-q)^{m-x} \\
& p(q \mid x)=\frac{q^{a+x-1}(1-q)^{a+n-x-1}}{\operatorname{Beta}\left(a+x_{1} b+n-x\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& p(x \mid x)=\int_{0}^{1}\binom{m}{x} q^{x}(7-q)^{m-x} \frac{q^{a+x-1}(1-q)^{b+n-x-1}}{\text { Beta (a+x, } b+n-x)} d q \\
& =\binom{m}{x} \frac{1}{\operatorname{Bet} a(a+x, b+n-x)} \int_{0}^{1} q^{x+a+x-1}(7-q)
\end{aligned}
$$

$X \sim$ beta (a, b) the odfis

$$
\begin{align*}
& f_{x}(x)=\frac{x^{a-1}(1-x)^{b-1}}{\operatorname{Beta}(a, b)} \quad x \in[0,1] \\
& \int_{0}^{1} f_{x}(x) d x=1 \\
& \text { So } \int_{0}^{1} \frac{x^{a-1}(1-x)^{b-1}}{\operatorname{Beta}(a, b)} d x=1 \\
& \Leftrightarrow \frac{1}{1} \int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=1 \\
& \Leftrightarrow \int_{0}^{\operatorname{Beta}(a, b)} x^{a-1}(1-x)^{b-1} d x=\operatorname{Beta}(a, b)
\end{align*}
$$

Use \oplus with $a+x+x$ instead of a and $b+m-x+n-k$ instead of b, tu find

$$
p(x \mid x)=\binom{m}{x} \frac{\operatorname{Beta}(x+a+x, \theta+m-x+n-x)}{\operatorname{Beta}(a+x, \theta+n-x)}
$$

Board example

Data: 10 patients have 6 successes. $\theta \sim \operatorname{beta}(5,5)$

- Find the posterior distribution of θ.
- Find the posterior predictive probability of success with the next patient.

Posterior predictive distribution: continuous prior, continuous data

- Continuous parameter θ in the range $[a, b]$.
- Prior pdf: $p(\theta), \theta \in[a, b]$.
- Continuous data, y. Likelihood $p(y \mid \theta)$.
- The prior predictive pdf of y is

$$
p(y)=\int_{a}^{b} p(y \mid \theta) p(\theta) d \theta
$$

where the integral is computed over the entire range of θ.

- Note: $p(y)$ is a pdf.

Posterior predictive distribution: continuous prior,

 continuous data- Posterior pdf: $p(\theta \mid y)$
- x : future data of the same experiment.
- The posterior predictive distribution of x is

$$
p(x \mid y)=\int_{a}^{b} p(x \mid y, \theta) p(\theta \mid y) d \theta .
$$

- As usual, we usually assume x and y are conditionally independent given θ. That is, $p(x \mid, \theta)=p(x \mid \theta)$.
- In this case,

$$
p(x \mid y)=\int_{a}^{b} p(x \mid \theta)(\hat{p(\theta \mid y)} d \theta .
$$

Posterior predictive distribution

The posterior predictive distribution for x given the observed data y is

$$
p(x \mid y)=\int p(x \mid \theta) p(\theta \mid y) d \theta
$$

- This is the probability distribution for unobserved or future data x.
- This distribution includes two types of uncertainty:
- the uncertainty remaining about θ after we have seen y;
- the random variation in x.

Board example: Exponential data/Gamma prior

- The time until failure for a type of light bulb is exponentially distributed with parameter $\theta>0$, where θ is unknown.
- We observe n bulbs, with failure times t_{1}, \ldots, t_{n}. $\operatorname{ti} \sim \exp (\theta)$
- We assume a $\operatorname{Gamma}(\alpha, \beta)$ prior distribution for θ, where $\alpha>0$ and $\beta>0$ are known.
(1) Determine the predictive posterior distribution for future data x

Solution
observed data $t=\left(t_{1},, t_{n}\right)$, where each $t_{i} \sim \operatorname{Exp}(\theta), \theta>0$. Since Coma (a, b) is conjugate to the exponential inelihoud, the posterior of θ given fie deetan t_{1} is $p\left(\theta|t| \sim \operatorname{Gamma}\left(\underset{\sim}{a+n_{1}} b+S\right)\right.$, where $S=\sum_{i=1}^{n} t_{i}$
Future data $x \sim \operatorname{Exp}(\theta) \quad \begin{aligned} & \tilde{a}=a+n \\ & \tilde{e}=b+S\end{aligned}$
The posterior predictive dutribution of x given t

$$
\begin{aligned}
& \rho(x \mid t)=\int_{0}^{\infty} \rho(x \mid \theta) \rho(\theta \mid t) d \theta \\
= & \int_{0}^{\infty} \theta e^{-\theta x} \frac{(\tilde{b})^{\tilde{a}} \theta^{\tilde{a}-1} e^{-\tilde{b} \theta}}{r(\tilde{a})} d \theta \\
= & \left.\frac{\left(\left.\tilde{b}\right|^{\tilde{a}}\right.}{\Gamma(\tilde{a})}\right|_{0} ^{\infty} \theta^{(\tilde{a}+1}-1 \exp (-(x+\tilde{b} \mid \theta) d \theta
\end{aligned}
$$

- $X_{\infty} \sim$ Gamma (a, b) then

$$
\begin{aligned}
& X_{0}^{\infty} \operatorname{Camma}(a, b) \text { then } \\
& \int_{0}^{\infty} f_{x}(x) d x=1 \in \int_{0}^{a} \frac{e^{a-1}}{\Gamma(a)} x^{-b x} d x=1 \\
& \Leftrightarrow \frac{b^{a}}{\Gamma(a)} \int_{0}^{\infty} x^{a-1} e^{-b x} d x=1 \quad \Leftrightarrow
\end{aligned}
$$

$$
\Leftrightarrow \int_{0}^{\infty} x^{a-1} e^{-b x} d x=\frac{r(a)}{\theta^{a}}
$$

Use \circledast but substitute in $\tilde{a}+1$ instead of a and $x+\tilde{e}$ instead of b to get

$$
\begin{aligned}
p(x \mid t) & =\frac{(\tilde{e})^{\tilde{a}}}{\Gamma(\tilde{a})} \frac{r(\tilde{a}+1)}{(x+\tilde{b})^{\tilde{a}+1}} \\
r(x+1) & =x \Gamma(x) \\
p(x \mid t) & =\frac{\left.(\widetilde{b})^{\tilde{a}} \tilde{a} \Gamma \tilde{a}\right)}{\Gamma(\tilde{a})(x+\tilde{b})^{\tilde{a}+1}} \\
& =\frac{(\tilde{e})^{\tilde{a}} \tilde{a}}{(x+\tilde{b})^{\tilde{a}+1}}
\end{aligned}
$$

Finding the posterior predictive distribution

$$
p(x \mid y)=\int p(x \mid \theta) p(\theta \mid y) d \theta
$$

- In conjugate examples, one can usually derive $p(x \mid y)$.
- It is generally easier to find the mean and variance of $p(x \mid y)$ than deriving the full distribution.

Conditional mean and variance in general

- Suppose that X and W are general random variables.
- Then

$$
E(X)=E(\underset{E(X \mid W}{ }) \quad \text { law of iterated expectation }
$$

and
$\operatorname{Var}(X)=\operatorname{Var}(E(X \mid W))+E(\operatorname{Var}(X \mid W)) \quad$ law of total variance

- In Bayesian inference, we replace W with parameters and X with the new data we would like to predict.

$$
\begin{aligned}
& \mathbb{F}(X \mid W)=g(W) \text { s randan variable } \\
& \text { If } W=w, w \in \mathbb{R} \\
& \mathbb{F}=\underbrace{(X \mid W=w)=g(w)} \text { non-vandom } \\
& \text { - } \mathbb{E}(g(W))=\mathbb{E}=(\mathbb{E}(X \mid W))=\mathbb{E}(X)
\end{aligned}
$$

Mean and variance of posterior predictive distribution

- For new data x and parameter(s) θ

$$
\begin{gathered}
E(x)=E(E(x \mid \theta)) \\
\operatorname{Var}(x)=\operatorname{Var}(E(x \mid \theta))+E(\operatorname{Var}(x \mid \theta)) \\
N=(x \mid y)=\mathbb{F}(\mathbb{F}(x \mid \theta, y))
\end{gathered}
$$

Mean and variance of posterior predictive distribution

- Add conditioning on observed data y, since we want posterior predictions

$$
E(x \mid y)=E(E(x \mid \theta, y)) \text { law of iterated expectation }
$$

$\rightarrow \operatorname{Var}(x \mid y)=\operatorname{Var}(E(x \mid \theta, y))+E(\operatorname{Var}(x \mid \theta, y)) \quad$ law of total variance

- These are the posterior predictive mean and posterior predictive variance of x, respectively.

Because x and y are independent given θ

$$
\begin{aligned}
& \underbrace{f_{x}(x \mid y, \theta)}_{x \mid y, \theta}=\mathbb{E}(x \mid \theta)=f_{x} \mid \theta(x \mid \theta) \\
& \operatorname{Var}(x \mid y, \theta)=\operatorname{var}(x \mid \theta)
\end{aligned}
$$

Example: beta prior, binomial data

- Data, $k \sim \operatorname{binomial}(n, q)$
- Prior, $q \sim \operatorname{beta}(\alpha, \beta)$.
- New data, $x \sim \operatorname{binomial}(m, q), m$ is known.
(1) Find the posterior predictive mean and variance of x

Solution
By the law of iterated expectation,

$$
\begin{aligned}
\mathbb{F}(x \mid x) & =\mathbb{E}(\mathbb{E}(x \mid q, x)) \\
& =\mathbb{E}=(\mathbb{E}(x \mid q))
\end{aligned}
$$

Now given $q, x \sim \operatorname{binomial}(m, q)$
So $\quad \pi=(\overline{x \mid q})=m \cdot q$

$$
\underbrace{\mathbb{E}(x \mid x)}_{\text {predictive mean }}=\mathbb{E}(m \cdot q)=m \mathbb{E}_{\substack{\text { prior } \\ \text { expectation }}}^{\operatorname{Son}(q)}=m \cdot \underbrace{a+b}_{\mu}
$$

$$
\begin{aligned}
& \text { Predictive mean } \\
& -\operatorname{Vav}(x|x|=\mathbb{E}(\operatorname{Var}(x \mid x, q))+\operatorname{Var}(\mathbb{E}(x \mid x, q)) \\
& -\mathbb{V a v}(x \mid x(q))=\mathbb{F}(\operatorname{Vav}(x \mid q))
\end{aligned}
$$

$$
\operatorname{Vav}(x \mid q)=m q(1-q)
$$

So $\begin{aligned} \operatorname{IE}(\operatorname{Var}(x \mid q))=\operatorname{IE}(\operatorname{mq}(\eta-q)) & =m\left[\mathbb{E}\left(q-q^{2}\right)\right] \\ & =m[\mathbb{E}(q)-E(\varepsilon)]\end{aligned}$

$$
=m\left[\mathbb{E}(z)-\mathbb{E}\left(\varepsilon^{\theta}\right)\right]
$$

$$
\operatorname{Vav}(\varepsilon)=\mathbb{F}=\left(\varepsilon^{2}\right)-[\mathbb{E}(\varepsilon)]^{2} \Rightarrow E\left(\varepsilon^{2}\right)=\operatorname{Vav}(\varepsilon)+[\mathbb{E}(\varepsilon)]^{2}
$$

$$
\begin{align*}
& \text { We hare } \\
& \begin{aligned}
\mathbb{F}(\operatorname{Vav}(x \mid x, \varepsilon)) & =m \mathbb{E}(\varepsilon)-m\left[\operatorname{vov}(\varepsilon)+\mathbb{E}(\varepsilon)^{2}\right] \\
& =m \mu-m\left(v+\mu^{2}\right)
\end{aligned}
\end{align*}
$$

where U is the prov rovionce, p is the pnormean.

$$
\begin{aligned}
\text { where } V \text { is te prover } \\
\left.\qquad \begin{array}{rl}
\operatorname{Vav}(\mid E \mathcal{E}(x \mid x))=\operatorname{Vor}(\mathbb{E}(x \mid \varepsilon)) & =\operatorname{Vav}(m \varepsilon) \\
& =m^{2} \operatorname{Vav}(\varepsilon) \\
& =m^{2} v
\end{array}\right) \text { (2) }
\end{aligned}
$$

where $V=\operatorname{Var}(a)$

Using simulation (Monte Carlo)

- Suppose we know the posterior distribution $p(\theta \mid y)$, or we have a sample from it.
- Then it is easy to use simulation to generate a sample from the posterior predictive distribution of a new data-point x.
- Because we know the distribution of x for any given value of θ : it's the same as the distribution of the original data y.

Simulating the posterior predictive distribution

- Suppose that we have a sample from the posterior distribution

$$
\theta_{1}, \theta_{2}, \ldots, \theta_{M}
$$

- We can simulate the posterior predictive distribution $p(x \mid y)$.
- We just generate

$$
x_{j} \text { from } p\left(x \mid \theta_{j}, y\right)=p\left(x \mid \theta_{j}\right), j=1,2, \ldots, M
$$

- Then

$$
x_{1}, x_{2}, \ldots, x_{M}
$$

is a sample from the posterior predictive distribution $p(x \mid y)$.

- (Since

$$
\left(x_{1}, \theta_{1}\right),\left(x_{2}, \theta_{2}\right), \ldots,\left(x_{M}, \theta_{M}\right)
$$

is a sample from $p(x, \theta \mid y)=p(\theta \mid y) p(x \mid \theta, y))$.

Simulating the posterior predictive distribution

- When do we have a sample from $p(\theta \mid y)$?
- Almost always, because we use MCMC to make inferences about θ.
- Or in simpler conjugate cases, we can directly generate an independent sample from $p(\theta \mid y)$.
- The latter is an example of simple Monte Carlo.

Using the the posterior predictive sample

- Suppose we have generated a sample from the posterior predictive distribution $x_{1}, x_{2}, \ldots, x_{M}$.
- We can summarize the sample for whatever interests us:
- Posterior predictive mean, median, variance - just summarize sample $x_{1}, x_{2}, \ldots, x_{M}$
- Prediction intervals, e.g. with 95% probability, x will be in some interval- just take the 0.025 and 0.975 sample quantiles of the sample $x_{1}, x_{2}, \ldots, x_{M}$.
- Posterior predictive probability that $x=0$ - just count what proportion of sample are 0.
- Posterior predictive probability that $x>c$, for some c - count what proportion of sample are $>c$.

