QUEEN MARY, UNIVERSITY OF LONDON
 MTH6102: Bayesian Statistical Methods

Exercise sheet 11

2023-2024

1. If the data is normally distributed

$$
y_{1}, \ldots, y_{n} \sim N\left(\mu, \sigma^{2}\right)
$$

where σ is known and μ has prior distribution $\mu \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$, we saw that the posterior distribution $p(\mu \mid y)$ is

$$
\mu \mid y \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)
$$

where

$$
\mu_{1}=\frac{\mu_{0} / \sigma_{0}^{2}+n \bar{y} / \sigma^{2}}{1 / \sigma_{0}^{2}+n / \sigma^{2}}, \sigma_{1}^{2}=\frac{1}{1 / \sigma_{0}^{2}+n / \sigma^{2}} .
$$

Suppose we take this model as model M_{2}, and also consider model M_{1} in which μ is known to be equal to μ_{0} :

$$
\begin{aligned}
& M_{1}: y_{i} \sim N\left(\mu_{0}, \sigma^{2}\right), i=1, \ldots, n \\
& M_{2}: y_{i} \sim N\left(\mu, \sigma^{2}\right), i=1, \ldots, n ; \mu \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)
\end{aligned}
$$

In model M_{1}, μ_{0} is fixed; for both models, σ is known.
It can be shown that

$$
p\left(y \mid M_{2}\right)=\frac{\sigma_{1} p\left(y \mid M_{1}\right)}{\sigma_{0} \exp \left(-\frac{\left(\mu_{1}-\mu_{0}\right)^{2}}{2 \sigma_{1}^{2}}\right)} .
$$

(a) What is the Bayes factor B_{12} for comparing models 1 and 2?
(b) Show that for sufficiently large values of σ_{0}

$$
B_{12} \approx \frac{\sqrt{n} \sigma_{0}}{\sigma} \exp \left(-\frac{n\left(\bar{y}-\mu_{0}\right)^{2}}{2 \sigma^{2}}\right) .
$$

For the data, let ABC be the last three digits of your 9 digit ID number. Take $y_{1}, \ldots, y_{n}=(20+A, 20+B, 20+C, 28,30)$. Take $\mu_{0}=25$ and $\sigma=3$.
(c) Calculate the posterior mean and standard deviation of μ under model M_{2}. Do this for $\sigma_{0}=10$, and then repeat with $\sigma_{0}=100$.
(d) For the same values of σ_{0} as in (1c), calculate the Bayes factor B_{12}, using both the exact formula and the approximation.
(e) Assuming that the models have equal prior probabilities, calculate the posterior probabilities that each model is the correct model, $p\left(M_{1} \mid y\right)$ and $p\left(M_{2} \mid y\right)$. Do this for each of the two values of σ_{0}. Use the exact Bayes factor, not the approximation.
(f) Comment briefly on the results of parts (1c) and (1e).
2. Suppose that the observed data is y_{1}, \ldots, y_{n}, which we assume is a sample from a Poisson distribution. Two models are under consideration: model M_{1} is that the distribution that generated the data is Poisson with mean 1 ; model M_{2} is that the data were generated by a Poisson distribution with mean λ, where λ has a $\operatorname{Gamma}(\alpha, \beta)$ prior distribution.
(a) Suppose that $y_{1}=\cdots=y_{n}=0$ and that $\alpha=1, \beta=1$. Show that in this case the Bayes factor B_{12} for comparing the two models is given by

$$
B_{12}=(n+1) e^{-n} .
$$

If $n=10$, what is the Bayes factor? If we also take as prior model probabilities $p\left(M_{1}\right)=1 / 2$ and $p\left(M_{1}\right)=1 / 2$, what is the posterior probability of model M_{1} ?
(b) Show that for general data and $\alpha=1, \beta=1$, the Bayes factor is given by

$$
B_{12}=\frac{(n+1)^{S+1} e^{-n}}{S!}, \text { where } S=\sum_{i=1}^{n} y_{i} .
$$

[This could be done by direct integration, which would involve manipulating gamma functions. Alternatively one could rearrange the Bayes theorem formula as was done for the normal example result that is quoted in question (1).]

