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Today’s agenda

Today’s lecture

Bayesian model selection
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Next week

Revision next week

Past papers
Extra problems for the exam
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More than one model

Let y be the observed data.

Suppose that we have two candidate statistical models that might fit
the data y, models M1 and M2.

Here, we assume that one of these models generated the data y.

Each model has a vector of parameters θk, k = 1, 2.

Model selection: We are interested in testing which model M1 or
M2 fits the data y better.
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Examples of more than one model

Data: y = (y1, . . . , yn) (continuous).

M1 : yi ∼ N(0, σ2), θ1 = (σ) vs M2 : yi ∼ N(µ, σ2), θ2 = (µ, σ)

We are interested in deciding whether or not µ is 0.
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Examples of more than one model

Regression models: yi ∼ N(µi, σ2), i = 1, . . . , n, where σ is known.

M1 : µi = β0, θ1 = (β0, σ) vs M2 : µi = β0 + β1x1i, θ2 = (β0, β1, σ)

We are interested in deciding whether or not β1 is 0.
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Hypothesis tests: frequentist

In the frequentist framework, we have a null and alternative
hypothesis.

H0 : µ = 0 H1 : µ 6= 0

Test hypotheses using p-value: Probability of statistic at least as
extreme as the observed value, if H0 is true.
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Posterior probabilities

The Bayesian framework does not use p-values.

Probability statements are based on the posterior distribution
conditional on the model Mk, k = 1, 2
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Notation for inference in one model

Recall the Bayes’ theorem

p(θ | y) = p(θ) p(y | θ)
p(y)

Conditional on the model Mk, Bayes’ theorem becomes

p(θk | y,Mk) = p(θk |Mk) p(y | θk,Mk)
p(y |Mk) , k = 1, 2

where

p(y |Mj) =
∫
p(θj |Mj) p(y | θj ,Mj) dθj , j = 1, 2

This is the probability of the data given model Mj is true.
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Bayes’ theorem among models

The term p(y |Mk) can be used in Bayes’ theorem for looking
probabilities of different models (hypotheses).
Bayes’ theorem for model Mk (hypothesis)

p(Mk | y) = p(Mk) p(y |Mk)
p(y) , k = 1, 2

p(Mk | y) is the posterior probability that model Mk is correct given
the data y.
These probabilities add up to 1:

∑2
k=1 p(Mk | y) = 1

This provides a Bayesian method for choosing between models M1

and M2
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Posterior probability of each model

Hypotheses: We are testing two models: model M1 and model M2

Prior probability: The probability of each model Mk, k = 1, 2 prior
to collecting the data. In this case, we have

p(M1) and p(M2).

Data: the result of the experiment. In this case, y.
Likelihood: The probability of the data given model Mj is true,
p(y |Mj). In this case,

p(y |M1) and p(y |M2),

where

p(y |Mj) =
∫
p(θj |Mj) p(y | θj ,Mj) dθj , j = 1, 2
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Posterior probability of each model

Posterior probability: The probability of each model Mk given the
data y. In this case,

p(M1 | y) and p(M2 | y).

By Bayes’ theorem,

p(Mk | y) = p(Mk) p(y |Mk)
p(y) , k = 1, 2.

The denominator is

p(data) = p(y) =
2∑
j=1

p(Mj) p(y |Mj).
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Prior distribution for models

We need to specify prior probabilities for each model,
p(Mj), j = 1, 2.

We could choose a discrete uniform distribution

p(Mj) = 1
r
, j = 1, 2.

(But we do not have to choose this distribution)
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Two models

So, we have by Bayes’ theorem,

p(Mk | y) = p(Mk) p(y |Mk)
p(y) , k = 1, 2.

Suppose we assume one of two models is correct, M1 and M2.

We want to decide which model fits the data y well.

We choose M1 or not depending on whether its posterior odds are
greater or less than its prior odds.
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Odds

The odds of event E versus event E{ are the ratio of their
probabilities P (E)/P (E{).

So the odds of E is

O(E) = P (E)
P (E{)

.

Let P (E) = p and P (E{) = 1− p, then O(E) = p
1−p .
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Odds:Examples

For a fair coin the odds of H (heads) is O(H) = 1. We say the odds
of heads are 1 to 1 or 50-50.

For a standard die, the odds of rolling 4 are 1/6
5/6 = 1/5. We say that

odds are 1 to 5 for rolling a 4.
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Prior odds, posterior odds

We compute,
p(M1 | y)
p(M2 | y) = p(M1) p(y |M1)

p(M2) p(y |M2)
Also

p(M2) = 1− p(M1),
p(M2 | y) = 1− p(M1 | y)
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Prior odds, posterior odds

The prior odds of model M1 vs model M2:

p(M1)
p(M2) = p(M1)

1− p(M1)

The posterior odds of model M1 vs model M2:

p(M1 | y)
p(M2 | y) = p(M1 | y)

1− p(M1 | y)
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Bayes factors

Using,
p(M1 | y)
p(M2 | y) = p(M1) p(y |M1)

p(M2) p(y |M2)
we have

posterior odds of Model M1 = prior odds of Model M1 ×
p(y |M1)
p(y |M2)
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Bayes factors

The factor
B12 = p(y |M1)

p(y |M2)
is called a Bayes factor.

So the Bayes factor is the ratio of the likelihoods.
We have:

Posterior odds of Model M1 = prior odds of Model M1 × Bayes
factor
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Bayes factors

For a hypothesis H (e.g Model M1) versus H{ (e.g Model M2), the
Bayes factor is

B12 = p(y | H)
p(y | H{)

We have:

Posterior odds of H = prior odds of H × Bayes factor
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Bayes factor formula

The Bayes factor is

B12 = p(y |M1)
p(y |M2)

=
∫
p(θ1 |M1) p(y | θ1,M1) dθ1∫
p(θ2 |M2) p(y | θ2,M2) dθ2

p(θk |Mk) and p(y | θk,Mk) are the prior and likelihood for model
Mk.
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Bayes factors and strength of evidence

Posterior odds of Model M1 = prior odds of Model M1 × Bayes factor

The Bayes factor tells us whether the data provides evidence for or
against Model M1 (hypothesis)

Bayes factor B12 > 1 suggests the posterior odds are greater than
the prior odds. So the data provides evidence for model M1

(hypothesis). Model M1 is more probable.
Bayes factor B12 < 1 suggests the posterior odds are less than the
prior odds. So the data provides evidence against model M1

(hypothesis). Model M2 is more probable.
If B12 = 1 then the prior and posterior odds are equal. So the data
provides no evidence either way.
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Bayes factors and strength of evidence

Rules of thumb for the size of the Bayes factor have been suggested
- no need to remember these.
E.g.:

Range of B12 Evidence
1 to 10− 1

2 slight evidence against M1
10− 1

2 to 10−1 moderate evidence against M1
10−1 to 10−2 strong evidence against M1
< 10−2 decisive evidence against M1
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Example

We flip a coin 5 times and observe k = 5 heads. We want to know if
the coin is fair, or if it is biased towards heads. Let q be the
probability of success.
Let be two models M1 and M2

M1 : k ∼ binomial(5, 0.5), M2 : k ∼ binomial(5, q).

We will use the Bayes factor to choose between Models M1 and M2.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Sensitivity to prior

Suppose that model M1 has a single parameter θ1 ∈ R.
Prior distribution θ1 ∼ N(0, σ2

0).

p(y |M1) =
∫
p(θ1 |M1) p(y | θ1,M1) dθ1

In typical problems, the likelihood p(y | θ1,M1) approaches zero for
θ1 outside some range (−A,A).
For large enough σ0

p(θ1 |M1) = 1√
2πσ0

e−θ2
1/(2σ2

0) ≈ 1√
2πσ0

for −A < θ1 < A
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Sensitivity to prior

Hence for large enough σ0 (flat, uninformative prior for θ1), the
Bayes factor is

B12 ≈
1√

2πσ0

∫
p(y | θ1,M1) dθ1∫

p(θ2 |M2) p(y | θ2,M2) dθ2

So if e.g. we replace a very large σ0 by 100 σ0, then B12 is divided
by 100.
However, the posterior distribution within model M1 will hardly
change, as the posterior is approximately proportional to the
likelihood for large σ0.
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Alternative approaches to model comparison

Using Bayes factors and posterior probabilities of models can depend
on the prior distributions, more so than inference within each model.
There are alternatives for checking or comparing models which
combine Bayesian and frequentist ideas.
E.g. posterior predictive checks.
We are not covering these.
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More flexible model

An alternative is: don’t choose among models.
Expand one model to make it flexible enough.
Models with many parameters can be easier to deal with in the
Bayesian framework:

conceptually, can go from joint posterior to marginal posterior
distribution;
having slightly informative prior distributions helps if there is not
enough data to estimate all parameters.
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