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Today's lecture

@ Bayesian model selection

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Revision next week

o Past papers

o Extra problems for the exam
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More than one model

©

Let y be the observed data.

©

Suppose that we have two candidate statistical models that might fit
the data y, models M7 and Ms.

@ Here, we assume that one of these models generated the data y.

©

Each model has a vector of parameters 6, k =1, 2.

©

Model selection: We are interested in testing which model M, or
M, fits the data y better.
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_ore than one model

o Data: y = (y1,...,yn) (continuous).
My sy~ N(0,0’z), b = (0) vs My oy ~ N(/J’vaz)a b = (/,L,O')

o We are interested in deciding whether or not p is 0.
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- more than one model

o Regression models: y; ~ N(p;,02),i =1,...,n, where o is known.

My py = po, bh = (5070) vs My : p; = Bo+ fixy, 02 = (/30,ﬂ170)

@ We are interested in deciding whether or not 3, is 0.
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-esis tests: frequentist

@ In the frequentist framework, we have a null and alternative
hypothesis.

H()I[I,ZO H1,LL7£O

o Test hypotheses using p-value: Probability of statistic at least as
extreme as the observed value, if Hy is true.
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o The Bayesian framework does not use p-values.

o Probability statements are based on the posterior distribution
conditional on the model M, k =1,2
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.otation for inference in one model

@ Recall the Bayes' theorem

_p®)ply|0)

o Conditional on the model My, Bayes' theorem becomes

0, | M, O, M,
p(Ok | y, M) = PO LM P 100 M) =

p(y | My)

where
oo 05) = [ 9061 30) ply | 6.0 doy, 5= 1.2

This is the probability of the data given model M; is true.
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Bayes' theorem among models

©

The term p(y | My) can be used in Bayes' theorem for looking
probabilities of different models (hypotheses).

©

Bayes' theorem for model M, (hypothesis)

p(My) p(y | My)

p(My | y) = E=1,2
(My | y) »(y)

©

p(My, | y) is the posterior probability that model My, is correct given
the data y.

These probabilities add up to 1: Zi:l p(Mp |y) =1

This provides a Bayesian method for choosing between models M,
and M,

©

©
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Posterior probability of each model

@ Hypotheses: We are testing two models: model M,; and model M,

@ Prior probability: The probability of each model M,, k = 1,2 prior
to collecting the data. In this case, we have

p(Ml) and p(MQ)

o Data: the result of the experiment. In this case, y.

o Likelihood: The probability of the data given model M; is true,
p(y | M;). In this case,

ply | M1) and p(y| Ma),

where

ply | M;) Z/P(9j | M) p(y | 05, M;) do;,  j=1,2
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-r probability of each model

o Posterior probability: The probability of each model M, given the
data y. In this case,

p(Mi]y) and p(M:|y).
o By Bayes' theorem,

p(Mg) p(y | My)

My |y) = , k=1,2.
o The denominator is
2
p(data) = p(y) = > _p(M;) ply | M;).
j=1
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-ibution for models

@ We need to specify prior probabilities for each model,
p(M;), j=1,2.

o We could choose a discrete uniform distribution

o (But we do not have to choose this distribution)
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 Two models

So, we have by Bayes' theorem,

p(My) p(y | My)

. k=12
p(y)

p(My | y) =

o Suppose we assume one of two models is correct, M7 and M.
o We want to decide which model fits the data y well.

@ We choose M, or not depending on whether its posterior odds are
greater or less than its prior odds.
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@ The odds of event E versus event E° are the ratio of their
probabilities P(E)/P(E®).

o So the odds of E' is

P(E)
() = bz

o Let P(E) =pand P(E®) =1 —p, then O(E) = {£.

1-p
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o For a fair coin the odds of H (heads) is O(H) = 1. We say the odds
of heads are 1 to 1 or 50-50.

o For a standard die, the odds of rolling 4 are % =1/5. We say that

odds are 1 to 5 for rolling a 4.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



o We compute,

o Also

p(Mz) =1 —p(M),
p(Msz |y) =1—p(M |y)
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@ The prior odds of model M; vs model Mo:

p(My) _  p(M)
p(M2)  1—p(M)

o The posterior odds of model M; vs model Ms:

p(My | y) p(My | y)
p(Mz|y) 1—p(M|y)
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o Using,

we have

posterior odds of Model M, = prior odds of Model M, x ;%
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_ Bayes factors

@ The factor

is called a Bayes factor.

@ So the Bayes factor is the ratio of the likelihoods.

@ We have:

Posterior odds of Model M, = prior odds of Model M, x Bayes
factor
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o For a hypothesis H (e.g Model M,) versus H® (e.g Model M,), the

Bayes factor is
_ pyl H)

Bio =
27 p(y | HY)

o We have:

Posterior odds of H = prior odds of H x Bayes factor
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o The Bayes factor is

M
5, _ Pl M0)

_ Jp(02 | M) ply | 61, M) dby
[ (02 | M) p(y | 02, Ma2) dbs

o p(0y | M) and p(y | Ok, My,) are the prior and likelihood for model
M.
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Bayes factors and strength of evidence

Posterior odds of Model M, = prior odds of Model M, x Bayes factor

o The Bayes factor tells us whether the data provides evidence for or
against Model M, (hypothesis)

o Bayes factor Bi2 > 1 suggests the posterior odds are greater than
the prior odds. So the data provides evidence for model M;
(hypothesis). Model M; is more probable.

o Bayes factor Bi2 < 1 suggests the posterior odds are less than the
prior odds. So the data provides evidence against model M;
(hypothesis). Model M> is more probable.

o If Bi2 = 1 then the prior and posterior odds are equal. So the data
provides no evidence either way.
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Bayes factors and strength of evidence

@ Rules of thumb for the size of the Bayes factor have been suggested
- no need to remember these.

o Eg.:

Range of B1;  Evidence

1to 1072 slight evidence against M,
1072 to 107! moderate evidence against M,
107! to 1072 strong evidence against M,
<1072 decisive evidence against M
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 Bample

@ We flip a coin 5 times and observe k£ = 5 heads. We want to know if
the coin is fair, or if it is biased towards heads. Let g be the
probability of success.

o Let be two models M, and M,
M, : k ~ binomial(5,0.5), M, : k ~ binomial(5, q).

@ We will use the Bayes factor to choose between Models M, and M,.
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-tivity to prior

©

Suppose that model M has a single parameter 6; € R.
Prior distribution 6; ~ N (0, 03).

©

ply | My) = / p(6y | M) ply | 61, My) dby

©

In typical problems, the likelihood p(y | 61, M;) approaches zero for
61 outside some range (—A4, A).

©

For large enough oy

L o2/eod) o L

0, | My) =
p(61 [ M) 2oy 2oy

for —A<0 <A
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Sensitivity to prior

@ Hence for large enough o (flat, uninformative prior for 1), the
Bayes factor is

O S ply | 61, M) db,
27 Varoo [p(02 | Ma) p(y | 02, My) doy

o So if e.g. we replace a very large og by 100 o, then Bjs is divided
by 100.
@ However, the posterior distribution within model M; will hardly

change, as the posterior is approximately proportional to the
likelihood for large .

B
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Alternative approaches to model comparison

@ Using Bayes factors and posterior probabilities of models can depend
on the prior distributions, more so than inference within each model.

@ There are alternatives for checking or comparing models which
combine Bayesian and frequentist ideas.

o E.g. posterior predictive checks.

@ We are not covering these.
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More flexible model

@ An alternative is: don't choose among models.
o Expand one model to make it flexible enough.

o Models with many parameters can be easier to deal with in the
Bayesian framework:

o conceptually, can go from joint posterior to marginal posterior
distribution;

o having slightly informative prior distributions helps if there is not
enough data to estimate all parameters.
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