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Important: All your answers must be justified. Unless the question explicitly
indicates otherwise, you may use any result from the lectures, provided you
state the result clearly.

Question 1 [25 marks].

(a) Given a subset A ⊆ R and a real number a ∈ R, define what it means for a to be
the supremum of A. [5]

(b) Consider the following set of real numbers:

A =

{
3n2 + n+ 3

n3 + n
: n ∈ N

}
⊆ R.

(i) Prove that A is bounded. [4]

(ii) Prove that inf(A) = 0. Can you replace inf by min? Justify your answer. [4]

(iii) Find sup(A) and max(A), justifying your answer in each case. [3]

(b) Let B ⊆ R be nonempty and bounded.

(i) Prove that inf(B) ≤ sup(B). [5]

(ii) Does there exist a B such that inf(B) = sup(B)? [4]
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Solutions to Question 1.

(a) We say that a is the supremum of A if and only if the following two conditions
hold:

• a is an upper bound for A: ∀x ∈ A : x ≤ a.

• a is the least upper bound for A: ∀z < a,∃x ∈ A : z < x. [5]

(b) Consider the set of real numbers

A =

{
3n2 + n+ 3

n3 + n
: n ∈ N

}
⊆ R.

(i) We must show that A is bounded. We begin by simplifying the expression

3n2 + n+ 3

n3 + n
=

3n2 + 3

n3 + n
+

n

n3 + n
=

3(n2 + 1)

n(n2 + 1)
+

1

n2 + 1
=

3

n
+

1

n2 + 1
.

Both of the sequences
3

n
and

1

n2 + 1

are decreasing. Hence, their sum is also decreasing. It follows that A is
bounded above by the n = 1 term, which is 7/2. On the other hand all the
terms are strictly positive, so A is bounded below by 0. We conclude that A
is bounded. [4]

(ii) We have shown in the previous part that 0 is a lower bound for A. To show
that it is the greatest lower bound, we need to show that for every ε > 0
there exists an n ∈ N such that

3n2 + n+ 3

n3 + n
< ε.

For n ∈ N we have

3n2 + n+ 3

n3 + n
≤ 3n2 + n+ 3

n3
=

3

n
+

1

n2
+

3

n3
≤ 3

n
+

1

n
+

3

n
=

7

n
.

So given ε > 0 we choose n ∈ N such that n > 7/ε (this exists by the
Archimedean principle). Then 7/n < ε as required.

We cannot replace inf by min. A result from lectures states that min(A)
exists if and only if inf(A) exists and belongs to A. In this case inf(A) = 0
exists but does not belong to A, since every element of A is strictly positive. [4]

(iii) We have already shown that the sequence is decreasing. Hence,
sup(A) = max(A) is equal to the n = 1 term, which is 7/2. [3]

(c) (i) Since B is nonempty there exists an element b ∈ B. Then by definition we
have

inf(B) ≤ b ≤ sup(B)

from which we conclude inf(B) ≤ sup(B). [5]

(ii) Equality can hold if B is a singleton: e.g. B = {1} has inf(B) = sup(B) = 1. [4]
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Question 2 [25 marks].

(a) Define what it means for a sequence (xn) to converge to a value x ∈ R. [5]

(b) Let (xn) and (yn) be sequences, and suppose that xn →∞ and yn →∞. Prove
that xn + yn →∞. [6]

(c) Give an example of a sequence that contains both a bounded subsequence and an
unbounded subsequence. [5]

(d) For each of the following sequences, decide whether or not it converges, and
justify your answer.
(You may use any result from the lectures, but you must state the result clearly.)

(i) xn =
1

n2023
. [3]

(ii) xn =
1

n+ n2
. [3]

(iii) xn = n(2 + sin(n
√

2023)). [3]
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Solutions to Question 2.

(a) We say that (xn) converges to x if and only if:

∀ε > 0 ∃N ∈ N ∀n > N : |xn − x| < ε. [5]

(b) Fix R > 0. We must show that there exists an N ∈ N such that for n > N we have
xn + yn > R. Since xn →∞ there exists N1 ∈ N such that for n > N1 we have

xn > R/2.

Similarly since yn →∞ there exists N2 ∈ N such that for n > N2 we have

yn > R/2.

Set N = max{N1, N2}. Then for n > N we have n > N1 and n > N2 and so

xn + yn > R/2 +R/2 = R. [6]

(c) Define

xn =

{
0 if n is even

n if n is odd.

Then the subsequence (x2k) is bounded (since x2k = 0 for all k ∈ N), but the
subsequence (x2k−1) is unbounded (since x2k−1 = 2k − 1 for all k ∈ N). [5]

(d) (i) Consider the sequence

xn =
1

n2023
.

We claim that xn → 0. Given ε > 0 take N ∈ N such that N > 1/ε (this
exists by the Archimedean property). Then for n > N we have∣∣∣∣ 1

n2023

∣∣∣∣ =
1

n2023
≤ 1

n
<

1

N
< ε

as required. [3]

(ii) Consider the sequence

xn =
1

n+ n2
.

We have

|xn| =
1

n+ n2
≤ 1

n

and we have seen in lectures that 1
n
→ 0. A result from lectures says that if

(xn), (yn) are sequences with yn → 0 and |xn| ≤ |yn| for all n ∈ N, then
xn → 0. Applying this in our case with yn = 1

n
, we conclude that xn → 0. [3]
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(iii) Consider the sequence

xn = n(2 + sin(n
√

2023)).

We claim that xn →∞, which in particular implies that (xn) does not
converge. Since sin(n

√
2023) ∈ [−1, 1] we have 2 + sin(n

√
2023) ∈ [1, 3] and

so
xn = n(2 + sin(n

√
2023)) ≥ n.

Fix R > 0. Take N ∈ N with N > R. Then for n > N we have

xn ≥ n > N > R

as required. [3]
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Question 3 [25 marks].

(a) Define what it means for a series to be conditionally convergent. [6]

(b) For each of the following series, decide whether or not it converges. You do not
need to calculate its value.

(i)
∞∑
k=1

2k + 3k

2k + 7k
. [6]

(ii)
∞∑
k=1

1

k2 +
√
k + 1

. [6]

(c) Suppose we are given two conditionally convergent series
∑∞

k=1 xk and
∑∞

k=1 yk.
Does it follow that the series

∞∑
k=1

(xk + yk)

is conditionally convergent? Prove or give a counterexample. [7]
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Solutions to Question 3.

(a) A series Σ∞k=1xk is conditionally convergent if it is convergent but not absolutely
convergent. This means that Σ∞k=1xk exists but Σ∞k=1|xk| does not exist. [6]

(b) (i) We use the ratio test. Let xk = (2k + 3k)/(2k + 7k). Then we calculate:

xk+1

xk
=

2k+1 + 3k+1

2k+1 + 7k+1
· 2k + 7k

2k + 3k

=
2k+1 + 3k+1

2k + 3k
· 2k + 7k

2k+1 + 7k+1

=
2(2

3
)k + 3

(2
3
)k + 1

·
(2
7
)k + 1

2(2
7
)k + 7

→ 3

1
· 1

7

=
3

7
< 1.

The limit is calculated using the following facts from lectures: r → 0 if
|r| < 1, and limits are compatible with addition, multiplication, and division.
We conclude by the ratio test that the series converges. [6]

(ii) For k ∈ N we have
1

k2 +
√
k + 1

≤ 1

k2
.

We have seen in lectures that the series Σ∞k=1
1
k2

converges. The comparison
test states that if (xk) and (yk) are sequences with 0 ≤ yk ≤ xk, and if
Σ∞k=1xk exists, then Σ∞k=1yk exists. Applying this to the above comparison,
we conclude that the given series converges. [6]

(c) It does not follow. Define:

xk =
(−1)k

k
, yk = −xk =

(−1)k+1

k
.

We have seen in lectures that Σ∞k=1xk is conditionally convergent. Moreover we
have seen in lectures that if we multiply a convergent series by a fixed c ∈ R, the
result is still convergent. Taking c = −1 and observing that yk = cxk, we conclude
that Σ∞k=1yk is convergent. However, it is not absolutely convergent, since
|yk| = |xk| = 1/k. Thus, we have two conditionally convergent series. The sum is

xk + yk = 0

and so, trivially, the series Σ∞k=1(xk + yk) is absolutely convergent. In particular, it
is not conditionally convergent. [7]
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Question 4 [25 marks].

(a) Consider the function f : R→ R given by:

f(x) = 3x+ 4.

Prove, directly from the definition, that f(x) is continuous at all points a ∈ R. [6]

(b) Consider the function g : R→ R given by:

g(x) =

{√
x if x > 0

−1 if x ≤ 0

Find a point a ∈ R such that g(x) is not continuous at a. Justify your answer.
(You may use any result from the lectures, but you must state the result clearly.) [6]

(c) Consider now two arbitrary functions f : R→ R and g : R→ R. Suppose that
f(x) and g(x) are both continuous at the point a ∈ R. Prove directly from the
definition that the function

h(x) = f(x) + g(x)

is also continuous at a. [7]

(d) Prove that there exists an x ∈ R such that x+ cos(x) = 1. [6]
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Solutions to Question 4.

(a) Given ε > 0 take δ = ε/3. Then for x ∈ R with |x− a| < δ = ε/3, we have

|f(x)− f(a)| = |(3x+ 4)− (3a+ 4)| = |3x− 3a| = 3|x− a| < 3δ = ε

as required. [6]

(b) Take a = 0 and suppose for a contradiction that g(x) is continuous at a. Consider
the sequence xn = 1/n for n ∈ N. Then xn → 0. On the other hand xn > 0 and so
g(xn) = 1/

√
n for all n ∈ N. It follows that g(xn)→ 0. But on the other hand

g(0) = −1. This contradicts a result from lectures, which states that if g(x) is
continuous at a and (xn) is a sequence with xn → a, then we must have
g(xn)→ g(a). [6]

(c) Given ε > 0 we set ε̃ = ε/2. There exists δ1 > 0 such that if |x− a| < δ1 then

|f(x)− f(a)| < ε̃

and similarly there exists δ2 > 0 such that if |x− a| < δ2 then

|g(x)− g(a)| < ε̃.

Take δ = min{δ1, δ2}. Then for |x− a| < δ we have

|h(x)−h(a)| = |(f(x)−f(a))+(g(x)−g(a))| ≤ |f(x)−f(a)|+|g(x)−g(a)| < ε̃+ε̃ = ε

where the first inequality follows from the triangle inequality. [7]

(d) We wish to apply the Intermediate Value Theorem to the function

g(x) = x+ cos(x)− 1.

We first justify that this function is continuous. We have seen in lectures that
constant functions are continuous, as are the functions x and cos(x). Moreover,
continuous functions are closed under addition and multiplication. We conclude
that g(x) is continuous.

We wish to find a, b ∈ R such that g(a) ≤ 0 and g(b) ≥ 0. Then, applying the
Intermediate Value Theorem will produce a point c between a and b such that
g(c) = 0. This will be the solution to our equation.

Taking a = −π and b = π, we compute:

g(−π) = −π − 2 < 0, g(π) = π − 2 > 0.

Applying the Intermediate Value Theorem, we obtain c ∈ [−π, π] with g(c) = 0,
as required. [6]

End of Paper.
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