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Today's lecture

@ Learn how to use the law of total probability to compute prior and
posterior predictive probabilities.
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Predicting new data

@ In previous lectures, we looked at updating the probability of
parameters (hypotheses) based on data.

@ We have observed data (result of the experiment) y ~ p(y | 0),
dependent on parameters 6.

@ Suppose we have found the posterior distribution p(6 | y).

@ Question: What is the probability distribution of new data x of a
future experiment?
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Predictive probabilities

@ In this lecture, we are going to focus on predictive probabilities.

@ Predictive probability means assigning a probability to each possible
outcome of a future experiment.

@ There are many examples where we want to make probabilistic
prediction: weather forecasting,
“Tomorrow it will rain with probability 60%

@ Other examples: medical treatment outcomes, climate change,
sports betting etc
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Predictive probabilities

Example: Three types of coins

There are three types of coins

@ Type A coins are fair, with probability 0.5 of heads.
@ Type B coins have probability 0.6 of heads.
@ Type C coins have probability 0.9 of heads.

You have a drawer containing 4 coins: 2 of type A, 1 of type B, and 1 of
type C.

You pick a coin at random.
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Prior predictive probabilities

Example: Three types of coins

@ Prior predictive probabilities. Before taking data, what is the
probability that our chosen coin will land heads?

o Let D, 5 be the event that the first toss lands heads.

@ Let A be the event the chosen coin is of type A. Likewise for B and
C. Then,

P(A) =05, P(B)=0.25,
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Prior predictive probabilities

Example: Three types of coins

o By the law of total probability, the prior predictive probability that
the coin lands heads is

P(D,,u) = P(Dyu | A)P(A) + P(Dyn | B)P(B)
+ P(D, , | C)P(C) = 0.625

@ Prior predictive probabilities. Assign a probability to an outcome of
the experiment. They are computed before we collect any data.
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Posterior predictive probabilities

Example: Three types of coins

@ Take data: We flip the chosen coin once and it lands heads.
- [
@ We now have data, (D, ; [first toss lands heads). Given the data
h———v
D, ;, we update the p rior probabilities of the hypotheses to
S——
posterior probabilities.

@ The Bayes updating table is

—— e

hypothesis | prior likelihood Bayes num. posterior
H P(H) | P(D, x|H) | P(Dy x|H)P(H) | P(H|D: x)
A 0.5 0.5 0.25 0.4
B 0.25 0.6 0.15 0.24
C 0.25 0.9 0.225 0.36
Total 1 D x) @@ 1

o P(D,y;)=P(D, x| AP(A)+ P(D, | B)P(B) + P(D, |

C)P(C) = 0.625 = P(data).
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Posterior predictive probabilities

Example: Three types of coins

@ Posterior predictive probabilities. Given D, ;; has happened (flipped
the coin once and got heads), what is the probability that our
chosen coin will land heads if flipped second time?

@ Let D, 5 the event “heads second time".

@ We want to compute P(D, | D, ), called the posterior
probability that the next toss lands heads.
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Posterior predictive probabilities

Example: Three types of coins

@ We assume that D, ; and D, ; are independent given the chosen
coin.

@ By the law of total probability,

P(Dywy | Diy) =P(Dyy | A)P(A| Dy )+ P(Dyy | BIP(B| D, )
+ P(D,.n | C)P(C | D, 1) = 0.668
@ We use the posterior probabilities P(A | D, ), P(B | D, y) and

P(C' |, &) as weights in place of the prior probabilities, P(A), P(B)
and P(C)

@ The heads on the first toss increases the probability of heads in the
second toss.
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Posterior predictive probabilities

@ Posterior predictive probabilities give a prediction of a future
outcome, after collecting data and updating prior to posterior.

@ Remember:

o Prior and posterior probabilities are for hypotheses/parameters.

o Prior predictive and posterior predictive probabilities are for data.

o Posterior predictive probabilities are used to predict future data when
the experiment is performed again.
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Predictive distributions: discrete prior, discrete data

Discrete data: y ~ p(y | 8), with 8 unknown

Discrete likelihood: p(y | 6).

Discrete hypothesis 6 with values 6,, 6,, ... 0.

Prior pmf p(6,) of 8, p(6,) =p(@=80,),i=1,... K.
y)=p@=20,|y),1=1,..., K.

@ Let x: future data of the same experiment. We assume that x and y
are independent given 6,.

© 6 6 o ©

Posterior pmf p(6,

@ By, the law of total probability, the posterior predictive probability

of z is
(lel)= > w6, w0,

\/\(\,

Y)-
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Board example

There are three type of coins in the drawer with probabilities 0.5, 0.6 and
0.9 of heads, respectively. Each coin is equally likely

Data: Pick one and toss 5 times. You get 1 head out of 5 tosses.
(a) Compute the posterior probabilities for the type of coin

(b) Compute the posterior predictive distributions of observing heads in
a future toss.
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Board example

@ Does the order of the 1 head and 4 tails affect the posterior
distribution of the coin type?
(a) Yes
(b) No.

@ Does the order of the 1 head and 4 tails affect the posterior
predictive distribution of the next flip?
(a) Yes
(b) No.
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Board example

@ Suppose that y is the number of expensive goods in a shop over 24
days. So y ~ Poisson(246) where 8 =1/2, 0 =1/4 or § = 1/8.

@ Suppose the prior pmf is

p(0 =1/2) =p(1/2) =0.2, p(0=1/4)=p(1/4)=0.5,
p(@ =1/8) =p(1/8) =0.3.

@ We observe y = 10 expensive goods were sold in the last 24 days.

@ Compute the posterior pmf for 6.
@ Compute the posterior predictive distribution that x+ = 10 number of
goods will be sold in the next 24 days.
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Predictive distributions: continuous prior, discrete data

o Continuous parameter 6 in the range |a, b].
@ Prior: p(0), 0 € [a,b].
o Discrete data, y. Likelihood p(y|6).

o By, the law of total probability, the prior predictive probability of y
IS

pldata) = p(s) = | p(y16) p(6) do,

where the integral is computed over the entire range of 6.

o Note: p(y) is a probability mass function, i.e., p(y) = P(Y =y)
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Predictive distributions: continuous prior, discrete data

o Posterior: p(0|y)

@ x: future data of the same experiment. We assume that x and y are
independent given 6

@ By, the law of total probability, the posterior predictive probability
of = is

plaly) = [ ' p(]6) p(6]y) db.
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Predictive distributions: continuous prior, discrete data

Example

We have a coin with unknown probability 6 of heads.
Prior: p(0) = 26, 6 € [0, 1].

o Find the prior predictive probability of throwing heads on the first
toss.

@ Suppose the first flip was heads. Find the posterior predictive
probabilities of both heads and tails on the second flip.
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Example: beta prior/ binomial data

o Data, k ~ binomial(n, q)

@ Prior, ¢ ~ beta(a, B).

o Find the posterior predictive probability to observe success on the

next Bernoulli trial.
@ Find the posterior predictive probability to observe a new outcome x

on the next Bernoulli trial.
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Data: 10 patients have 6 successes. 6 ~ beta(5,5)

o Find the posterior distribution of 6.

@ Find the posterior predictive probability of success with the next
patient.
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Posterior predictive distribution: continuous prior,
continuous data

Continuous parameter 6 in the range |a, b].
Prior pdf: p(6), 0 € [a,b].
Continuous data, y. Likelihood p(y|6).

© 6 o ¢

The prior predictive pdf of y is

o) = [ p(y16) p(6) do,

where the integral is computed over the entire range of 6.

o Note: p(y) is a pdf.
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Posterior predictive distribution: continuous prior,
continuous data

o Posterior pdf: p(6|y)

@ x: future data of the same experiment.

@ The posterior predictive probability of x is

plaly) = [ p(aly, 0) p(6ly) db.

@ As usual, we usually assume x and y are conditionally independent
given 0. That is, p(x|y,0) = p(z|0).

@ In this case,

plaly) = | ' p(l6) p(6ly) do.
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Posterior predictive distribution

The posterior predictive distribution for x given the observed data v is

p<x|y>=/p<xw>p<9|y>d9

@ This is the probability distribution for unobserved or future data x.

@ This distribution includes two types of uncertainty:

o the uncertainty remaining about 6 after we have seen y;
o the random variation in .
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Board example: Exponential data/Gamma prior

@ The time until failure for a type of light bulb is exponentially
distributed with parameter 8 > 0, where 6 is unknown.

@ We observe n bulbs, with failure times ¢4, ..., %,.

@ We assume a Gamma(a, ) prior distribution for 6, where o > 0 and
B > 0 are known.

@ Determine the predictive posterior distribution for future data x
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Finding the posterior predictive distribution

p<w|y>=/p<x\e>p<9|y>de

@ In conjugate examples, one can usually derive p(x | y).

o It is generally easier to find the mean and variance of p(x | ) than
deriving the full distribution.
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Conditional mean and variance in general

@ Suppose that X and W are general random variables.
@ Then

E(X)=FEE(X |W)) law of iterated expectation
and
Var(X) = Var(E(X | W)) + E(Var(X | W)) law of total variance

@ In Bayesian inference, we replace W with parameters and X with
the new data we would like to predict.
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-ariance of posterior predictive distribution

@ For new data x and parameter(s) 6
E(z) = E(E(z | 0))

Var(x) =Var(E(x | 0))+ E(Var(x | 9))
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Mean and variance of posterior predictive distribution

@ Add conditioning on observed data y, since we want posterior
predictions

E(x|y)=FE(E(x|0,y)) law of iterated expectation

Var(z |y) =Var(E(x | 0,y)+EVar(x | 0,y)) law of total variance

@ These are the posterior predictive mean and posterior predictive
variance of x, respectively.
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-eta prior, binomial data

o Data, k ~ binomial(n, q)
@ Prior, g ~ beta(a, ).

@ New data, x ~ binomial(m, ¢q), m is known.

(1) Find the posterior predictive mean and variance of z
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Using simulation (Monte Carlo)

@ Suppose we know the posterior distribution p(6 | i), or we have a
sample from it.

@ Then it is easy to use simulation to generate a sample from the
posterior predictive distribution of a new data-point z.

o Because we know the distribution of x for any given value of 6: it's
the same as the distribution of the original data y.
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Simulating the posterior predictive distribution

@ Suppose that we have a sample from the posterior distribution
917927'“791\4

@ We can simulate the posterior predictive distribution p(x | y).

@ We just generate
z; fromp(x | 0;,y) =plx|0;), 7=1,2,...,M

@ Then
L1y, L2y LM\[
is a sample from the posterior predictive distribution p(x | y).

@ (Since
(331791)7 (332782)7 RIS (CCM,HM)

is a sample from p(x,0 | y) = p(0 | y) p(x | 6,y)).
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Simulating the posterior predictive distribution

@ When do we have a sample from p(f | y)?
@ Almost always, because we use MCMC to make inferences about 6.

@ Or in simpler conjugate cases, we can directly generate an
independent sample from p(4 | y).

@ The latter is an example of simple Monte Carlo.
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Using the the posterior predictive sample

@ Suppose we have generated a sample from the posterior predictive
distribution x1, 29, ..., 2.
@ We can summarize the sample for whatever interests us:

o Posterior predictive mean, median, variance - just summarize sample
L1y L2y...3TM

o Prediction intervals, e.g. with 95% probability, = will be in some
interval- just take the 0.025 and 0.975 sample quantiles of the
sample x1,x2,..., 2.

o Posterior predictive probability that £ = 0 - just count what
proportion of sample are 0.

o Posterior predictive probability that « > ¢, for some ¢ - count what
proportion of sample are > c.
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