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Today's lecture

@ Learn how to use the law of total probability to compute prior and
posterior predictive probabilities.
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Predicting new data

o In previous lectures, we looked at updating the probability of
parameters (hypotheses) based on data.

o We have observed data (result of the experiment) y ~ p(y | ),
dependent on parameters 6.

o Suppose we have found the posterior distribution p(6 | y).

o Question: What is the probability distribution of new data x of a
future experiment?
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Predictive probabilities

o In this lecture, we are going to focus on predictive probabilities.

o Predictive probability means assigning a probability to each possible
outcome of a future experiment.

@ There are many examples where we want to make probabilistic
prediction: weather forecasting,
“Tomorrow it will rain with probability 60% "

@ Other examples: medical treatment outcomes, climate change,
sports betting etc
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Predictive probabilities

Example: Three types of coins

There are three types of coins

o Type A coins are fair, with probability 0.5 of heads.
@ Type B coins have probability 0.6 of heads.
@ Type C coins have probability 0.9 of heads.

You have a drawer containing 4 coins: 2 of type A, 1 of type B, and 1 of
type C.

You pick a coin at random.
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Prior predictive probabilities

Example: Three types of coins

o Prior predictive probabilities. Before taking data, what is the
probability that our chosen coin will land heads?

o Let D, , be the event that the first toss lands heads.

o Let A be the event the chosen coin is of type A. Likewise for B and
C. Then,

P(A) =05, P(B)=025 P(C)=0.25.
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Prior predictive probabilities

Example: Three types of coins

o By the law of total probability, the prior predictive probability that
the coin lands heads is

P(Dl,H) = P(Dl,H |A)P(A) JFP(DLH | B)P(B)
+P(D, ;| C)P(C) = 0.625

@ Prior predictive probabilities. Assign a probability to an outcome of
the experiment. They are computed before we collect any data.
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Posterior predictive probabilities

Example: Three types of coins

o Take data: We flip the chosen coin once and it lands heads.

@ We now have data, D, ; (first toss lands heads). Given the data
D, u, we update the prior probabilities of the hypotheses to
posterior probabilities.

@ The Bayes updating table is

hypothesis | prior likelihood Bayes num. posterior
H P(H) | P(D,4H) | P(D,..|JH)P(H) | P(H|D,..)
A 0.5 0.5 0.25 0.4

B 0.25 0.6 0.15 0.24

C 0.25 0.9 0.225 0.36
Total 1 P(D,5)=0625 |1

° P(DI,H) = P(Dl,H | A)P(A) +P(D1,H | B)P(B) +P(D1,H |
C)P(C) = 0.625 = P(data).
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Posterior predictive probabilities

Example: Three types of coins

o Posterior predictive probabilities. Given D, ;; has happened (flipped
the coin once and got heads), what is the probability that our
chosen coin will land heads if flipped second time?

o Let D, ; the event “heads second time".

o We want to compute P(D, ;| D,.;), called the posterior
probability that the next toss lands heads.
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Posterior predictive probabilities

Example: Three types of coins

o We assume that D, , and D, , are independent given the chosen
coin.

o By the law of total probability,

P(D,p | Dyg)=P(Dyny | AYP(A| Dy y)+ P(Dyy | BIP(B| D, x)
+ P(D,n | C)P(C | Dy 5) = 0.668
o We use the posterior probabilities P(A | D, ), P(B| D, ;) and

P(C |,.i) as weights in place of the prior probabilities, P(A), P(B)
and P(C)

@ The heads on the first toss increases the probability of heads in the
second toss.
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Posterior predictive probabilities

o Posterior predictive probabilities give a prediction of a future
outcome, after collecting data and updating prior to posterior.

@ Remember:
o Prior and posterior probabilities are for hypotheses/parameters.
o Prior predictive and posterior predictive probabilities are for data.
o Posterior predictive probabilities are used to predict future data when
the experiment is performed again.
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Predictive distributions: discrete prior, discrete data

Discrete data: y ~ p(y | 8), with 8 unknown

Discrete likelihood: p(y | 6).

Discrete hypothesis 6 with values 6,, 0,, ... 6.

Prior pmf p(0,) of 0, p(6;) =p(6 =0,),i=1,...,K.
y) = p( y,i=1,...,K.

o Let x: future data of the same experiment. We assume that x and y
are independent given 6,.

© © © o o

Posterior pmf p(6,

o By, the law of total probability, the posterior predictive probability
of x is

pely) = Zp z[0.) p(0.]y).
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Board example

There are three type of coins in the drawer with probabilities 0.5, 0.6 and
0.9 of heads, respectively. Each coin is equally likely

Data: Pick one and toss 5 times. You get 1 head out of 5 tosses.

(a) Compute the posterior probabilities for the type of coin

(b) Compute the posterior predictive distributions of observing heads in
a future toss.
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@ Does the order of the 1 head and 4 tails affect the posterior
distribution of the coin type?
(a) Yes
(b) No.

o Does the order of the 1 head and 4 tails affect the posterior
predictive distribution of the next flip?
(a) Yes
(b) No.
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Board example

o Suppose that y is the number of expensive goods in a shop over 24
days. So y ~ Poisson(246) where 0 =1/2, 6 =1/4 or 6 = 1/8.

@ Suppose the prior pmf is

p(6=1/2) = p(1/2) =02, p(6 = 1/4) = p(1/4) = 0.5,
p(0 = 1/8) = p(1/8) = 0.3.

@ We observe y = 10 expensive goods were sold in the last 24 days.

@ Compute the posterior pmf for 6.
@ Compute the posterior predictive distribution that z = 10 number of
goods will be sold in the next 24 days.
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Predictive distributions: continuous prior, discrete data

o Continuous parameter 6 in the range [a, b].
@ Prior: p(#), 0 € [a,b)].
o Discrete data, y. Likelihood p(y|6).

o By, the law of total probability, the prior predictive probability of y
is

p(data) = ply) = /'bp<y|e>p<9> 0,

where the integral is computed over the entire range of 6.

o Note: p(y) is a probability mass function, i.e., p(y) = P(Y =y)
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.redictive distributions: continuous prior, discrete data

o Posterior: p(0y)
o x: future data of the same experiment. We assume that x and y are
independent given 0

o By, the law of total probability, the posterior predictive probability
of = is

plaly) = [ p(e10) pl6ls) b
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Predictive distributions: continuous prior, discrete data

Example

We have a coin with unknown probability 6 of heads.
Prior: p(6) =26, 0 € [0,1].

o Find the prior predictive probability of throwing heads on the first
toss.

o Suppose the first flip was heads. Find the posterior predictive
probabilities of both heads and tails on the second flip.
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-)Ie: beta prior/ binomial data

o Data, k ~ binomial(n, q)
o Prior, ¢ ~ beta(a, 3).

o Find the posterior predictive probability to observe success on the

next Bernoulli trial.
o Find the posterior predictive probability to observe a new outcome z

on the next Bernoulli trial.
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Data: 10 patients have 6 successes. 6 ~ beta(5,5)

o Find the posterior distribution of 6.

o Find the posterior predictive probability of success with the next
patient.
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redictive distribution: continuous prior,
data

Continuous parameter 6 in the range [a, b].
Prior pdf: p(0), 0 € [a,b].
Continuous data, y. Likelihood p(y|0).
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The prior predictive pdf of y is

py) = /bp(yI(?)p(@) do,

where the integral is computed over the entire range of 6.

©

Note: p(y) is a pdf.
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Posterior predictive distribution: continuous prior,
continuous data

©

Posterior pdf: p(8|y)

o x: future data of the same experiment.

©

The posterior predictive probability of x is

p(zly) = /bp(xy,t?) p(0ly) db.

@ As usual, we usually assume x and y are conditionally independent
given 6. That is, p(x|y,0) = p(x|6).

In this case,

©

p(zly) = ‘/bp(lﬂ)p(ey) do.
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Posterior predictive distribution

The posterior predictive distribution for x given the observed data y is

p<w|y>=/p<x|o>p<e|y>de

o This is the probability distribution for unobserved or future data x.
@ This distribution includes two types of uncertainty:

o the uncertainty remaining about 0 after we have seen y;
o the random variation in z.
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Board example: Exponential data/Gamma prior

@ The time until failure for a type of light bulb is exponentially
distributed with parameter 8 > 0, where 6 is unknown.

o We observe n bulbs, with failure times t1,...,%,.

o We assume a Gamma(a, ) prior distribution for §, where « > 0 and
B > 0 are known.

@ Determine the predictive posterior distribution for future data x

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



-g the posterior predictive distribution

p<x|y>:/p<x|e>p<a|y>de

o In conjugate examples, one can usually derive p(z | y).

o It is generally easier to find the mean and variance of p(x | y) than
deriving the full distribution.
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Conditional mean and variance in general

o Suppose that X and W are general random variables.
o Then

E(X)=E(E(X |W)) law of iterated expectation
and
Var(X) = Var(E(X | W)) + E(Var(X | W)) law of total variance

o In Bayesian inference, we replace W with parameters and X with
the new data we would like to predict.
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_ance of posterior predictive distribution

o For new data x and parameter(s) 6
E(x) = E(E(x [ 0))

Var(z) =Var(E(z | 0)) + EVar(z | 6))
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-n and variance of posterior predictive distribution

o Add conditioning on observed data y, since we want posterior
predictions

E(z|y)=E(E(z|0,y)) law of iterated expectation

Var(z |y) =Var(E(z | 0,y))+EVar(z | 6,y)) law of total variance

@ These are the posterior predictive mean and posterior predictive
variance of x, respectively.
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- prior, binomial data

o Data, k ~ binomial(n, q)
@ Prior, ¢ ~ beta(a, ).

o New data, x ~ binomial(m, ¢), m is known.

(1) Find the posterior predictive mean and variance of «
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Using simulation (Monte Carlo)

@ Suppose we know the posterior distribution p(f | y), or we have a
sample from it.

@ Then it is easy to use simulation to generate a sample from the
posterior predictive distribution of a new data-point .

o Because we know the distribution of x for any given value of 8: it's
the same as the distribution of the original data .
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Simulating the posterior predictive distribution

©

Suppose that we have a sample from the posterior distribution

91,92,...,0]\/[

©

We can simulate the posterior predictive distribution p(z | ).

©

We just generate

zj fromp(z | 6;,y) =p(x|0;), j=1,2,...,M
o Then
L1, X2, TM

is a sample from the posterior predictive distribution p(z | y).

(Since

©

(xla 01)’ (xQ,eQ)a EERE) (xMa aM)
is a sample from p(z, 0 | y) = p(0 | y) p(z | 6,y)).
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Simulating the posterior predictive distribution

@ When do we have a sample from p(0 | y)?
o Almost always, because we use MCMC to make inferences about 6.

@ Or in simpler conjugate cases, we can directly generate an
independent sample from p(6 | y).

o The latter is an example of simple Monte Carlo.
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Using the the posterior predictive sample

@ Suppose we have generated a sample from the posterior predictive
distribution x1,x2, ..., .
o We can summarize the sample for whatever interests us:
o Posterior predictive mean, median, variance - just summarize sample
L1,L2y...,TM
o Prediction intervals, e.g. with 95% probability,  will be in some
interval- just take the 0.025 and 0.975 sample quantiles of the
sample z1,T2,...,TMm.
o Posterior predictive probability that x = 0 - just count what
proportion of sample are 0.
o Posterior predictive probability that > ¢, for some ¢ - count what
proportion of sample are > c.
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