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Today’s agenda

Today’s lecture

Learn how to use the law of total probability to compute prior and
posterior predictive probabilities.
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Predicting new data

In previous lectures, we looked at updating the probability of
parameters (hypotheses) based on data.

We have observed data (result of the experiment) y ∼ p(y | θ),
dependent on parameters θ.

Suppose we have found the posterior distribution p(θ | y).

Question: What is the probability distribution of new data x of a
future experiment?
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Predictive probabilities

In this lecture, we are going to focus on predictive probabilities.

Predictive probability means assigning a probability to each possible
outcome of a future experiment.

There are many examples where we want to make probabilistic
prediction: weather forecasting,
“Tomorrow it will rain with probability 60% ”

Other examples: medical treatment outcomes, climate change,
sports betting etc
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Predictive probabilities

Example: Three types of coins

There are three types of coins

Type A coins are fair, with probability 0.5 of heads.
Type B coins have probability 0.6 of heads.
Type C coins have probability 0.9 of heads.

You have a drawer containing 4 coins: 2 of type A, 1 of type B, and 1 of
type C.

You pick a coin at random.
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Prior predictive probabilities

Example: Three types of coins

Prior predictive probabilities. Before taking data, what is the
probability that our chosen coin will land heads?

Let D1,H be the event that the first toss lands heads.

Let A be the event the chosen coin is of type A. Likewise for B and
C. Then,

P (A) = 0.5, P (B) = 0.25, P (C) = 0.25.
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Prior predictive probabilities

Example: Three types of coins

By the law of total probability, the prior predictive probability that
the coin lands heads is

P (D1,H) = P (D1,H | A)P (A) + P (D1,H | B)P (B)
+ P (D1,H | C)P (C) = 0.625

Prior predictive probabilities. Assign a probability to an outcome of
the experiment. They are computed before we collect any data.
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Posterior predictive probabilities

Example: Three types of coins

Take data: We flip the chosen coin once and it lands heads.
We now have data, D1,H (first toss lands heads). Given the data
D1,H , we update the prior probabilities of the hypotheses to
posterior probabilities.

The Bayes updating table is

hypothesis prior likelihood Bayes num. posterior
H P (H) P (D1,H |H) P (D1,H |H)P (H) P (H|D1,H)
A 0.5 0.5 0.25 0.4
B 0.25 0.6 0.15 0.24
C 0.25 0.9 0.225 0.36
Total 1 P (D1,H) = 0.625 1

P (D1,H) = P (D1,H | A)P (A) + P (D1,H | B)P (B) + P (D1,H |
C)P (C) = 0.625 = P (data).
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Posterior predictive probabilities

Example: Three types of coins

Posterior predictive probabilities. Given D1,H has happened (flipped
the coin once and got heads), what is the probability that our
chosen coin will land heads if flipped second time?

Let D2,H the event “heads second time”.

We want to compute P (D2,H | D1,H), called the posterior
probability that the next toss lands heads.
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Posterior predictive probabilities

Example: Three types of coins

We assume that D1,H and D2,H are independent given the chosen
coin.
By the law of total probability,

P (D2,H | D1,H) = P (D2,H | A)P (A | D1,H) + P (D2,H | B)P (B | D1,H)
+ P (D2,H | C)P (C | D1,H) = 0.668

We use the posterior probabilities P (A | D1,H), P (B | D1,H) and
P (C |1,H) as weights in place of the prior probabilities, P (A), P (B)
and P (C)
The heads on the first toss increases the probability of heads in the
second toss.
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Posterior predictive probabilities

Posterior predictive probabilities give a prediction of a future
outcome, after collecting data and updating prior to posterior.

Remember:
Prior and posterior probabilities are for hypotheses/parameters.
Prior predictive and posterior predictive probabilities are for data.
Posterior predictive probabilities are used to predict future data when
the experiment is performed again.
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Predictive distributions: discrete prior, discrete data

Discrete data: y ∼ p(y | θ), with θ unknown
Discrete likelihood: p(y | θ).
Discrete hypothesis θ with values θ1, θ2, . . . θK .
Prior pmf p(θi) of θ, p(θi) = p(θ = θi), i = 1, . . . ,K.
Posterior pmf p(θi | y) = p(θ = θi | y), i = 1, . . . ,K.

Let x: future data of the same experiment. We assume that x and y
are independent given θi.
By, the law of total probability, the posterior predictive probability
of x is

p(x|y) =
K∑

i=1

p(x|θi) p(θi|y).
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Board example

There are three type of coins in the drawer with probabilities 0.5, 0.6 and
0.9 of heads, respectively. Each coin is equally likely

Data: Pick one and toss 5 times. You get 1 head out of 5 tosses.

(a) Compute the posterior probabilities for the type of coin
(b) Compute the posterior predictive distributions of observing heads in

a future toss.
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Board example

Does the order of the 1 head and 4 tails affect the posterior
distribution of the coin type?
(a) Yes
(b) No.

Does the order of the 1 head and 4 tails affect the posterior
predictive distribution of the next flip?
(a) Yes
(b) No.
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Board example

Suppose that y is the number of expensive goods in a shop over 24
days. So y ∼ Poisson(24θ) where θ = 1/2, θ = 1/4 or θ = 1/8.
Suppose the prior pmf is

p(θ = 1/2) = p(1/2) = 0.2, p(θ = 1/4) = p(1/4) = 0.5,
p(θ = 1/8) = p(1/8) = 0.3.

We observe y = 10 expensive goods were sold in the last 24 days.

1 Compute the posterior pmf for θ.
2 Compute the posterior predictive distribution that x = 10 number of

goods will be sold in the next 24 days.
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Predictive distributions: continuous prior, discrete data

Continuous parameter θ in the range [a, b].
Prior: p(θ), θ ∈ [a, b].
Discrete data, y. Likelihood p(y|θ).

By, the law of total probability, the prior predictive probability of y
is

p(data) = p(y) =
∫ b

a

p(y|θ) p(θ) dθ,

where the integral is computed over the entire range of θ.
Note: p(y) is a probability mass function, i.e., p(y) = P (Y = y)
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Predictive distributions: continuous prior, discrete data

Posterior: p(θ|y)
x: future data of the same experiment. We assume that x and y are
independent given θ

By, the law of total probability, the posterior predictive probability
of x is

p(x|y) =
∫ b

a

p(x|θ) p(θ|y) dθ.
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Predictive distributions: continuous prior, discrete data

Example

We have a coin with unknown probability θ of heads.
Prior: p(θ) = 2θ, θ ∈ [0, 1].

Find the prior predictive probability of throwing heads on the first
toss.

Suppose the first flip was heads. Find the posterior predictive
probabilities of both heads and tails on the second flip.
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Example: beta prior/ binomial data

Data, k ∼ binomial(n, q)
Prior, q ∼ beta(α, β).

Find the posterior predictive probability to observe success on the
next Bernoulli trial.
Find the posterior predictive probability to observe a new outcome x
on the next Bernoulli trial.
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Board example

Data: 10 patients have 6 successes. θ ∼ beta(5, 5)

Find the posterior distribution of θ.
Find the posterior predictive probability of success with the next
patient.
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Posterior predictive distribution: continuous prior,
continuous data

Continuous parameter θ in the range [a, b].
Prior pdf: p(θ), θ ∈ [a, b].
Continuous data, y. Likelihood p(y|θ).
The prior predictive pdf of y is

p(y) =
∫ b

a

p(y|θ) p(θ) dθ,

where the integral is computed over the entire range of θ.
Note: p(y) is a pdf.
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Posterior predictive distribution: continuous prior,
continuous data

Posterior pdf: p(θ|y)
x: future data of the same experiment.

The posterior predictive probability of x is

p(x|y) =
∫ b

a

p(x|y, θ) p(θ|y) dθ.

As usual, we usually assume x and y are conditionally independent
given θ. That is, p(x|y, θ) = p(x|θ).
In this case,

p(x|y) =
∫ b

a

p(x|θ) p(θ|y) dθ.
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Posterior predictive distribution

The posterior predictive distribution for x given the observed data y is

p(x | y) =
∫
p(x | θ) p(θ | y) dθ

This is the probability distribution for unobserved or future data x.
This distribution includes two types of uncertainty:

the uncertainty remaining about θ after we have seen y;
the random variation in x.
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Board example: Exponential data/Gamma prior

The time until failure for a type of light bulb is exponentially
distributed with parameter θ > 0, where θ is unknown.
We observe n bulbs, with failure times t1, . . . , tn.
We assume a Gamma(α, β) prior distribution for θ, where α > 0 and
β > 0 are known.

1 Determine the predictive posterior distribution for future data x
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Finding the posterior predictive distribution

p(x | y) =
∫
p(x | θ) p(θ | y) dθ

In conjugate examples, one can usually derive p(x | y).

It is generally easier to find the mean and variance of p(x | y) than
deriving the full distribution.
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Conditional mean and variance in general

Suppose that X and W are general random variables.
Then

E(X) = E(E(X |W )) law of iterated expectation

and

Var(X) = Var(E(X |W )) +E(Var(X |W )) law of total variance

In Bayesian inference, we replace W with parameters and X with
the new data we would like to predict.
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Mean and variance of posterior predictive distribution

For new data x and parameter(s) θ

E(x) = E(E(x | θ))

V ar(x) = V ar(E(x | θ)) + E(V ar(x | θ))
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Mean and variance of posterior predictive distribution

Add conditioning on observed data y, since we want posterior
predictions

E(x | y) = E(E(x | θ, y)) law of iterated expectation

V ar(x | y) = V ar(E(x | θ, y))+E(V ar(x | θ, y)) law of total variance

These are the posterior predictive mean and posterior predictive
variance of x, respectively.
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Example: beta prior, binomial data

Data, k ∼ binomial(n, q)
Prior, q ∼ beta(α, β).
New data, x ∼ binomial(m, q), m is known.

(1) Find the posterior predictive mean and variance of x
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Using simulation (Monte Carlo)

Suppose we know the posterior distribution p(θ | y), or we have a
sample from it.
Then it is easy to use simulation to generate a sample from the
posterior predictive distribution of a new data-point x.
Because we know the distribution of x for any given value of θ: it’s
the same as the distribution of the original data y.
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Simulating the posterior predictive distribution

Suppose that we have a sample from the posterior distribution

θ1, θ2, . . . , θM

We can simulate the posterior predictive distribution p(x | y).
We just generate

xj from p(x | θj , y) = p(x | θj), j = 1, 2, . . . ,M

Then
x1, x2, . . . , xM

is a sample from the posterior predictive distribution p(x | y).
(Since

(x1, θ1), (x2, θ2), . . . , (xM , θM )

is a sample from p(x, θ | y) = p(θ | y) p(x | θ, y)).
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Simulating the posterior predictive distribution

When do we have a sample from p(θ | y)?
Almost always, because we use MCMC to make inferences about θ.
Or in simpler conjugate cases, we can directly generate an
independent sample from p(θ | y).
The latter is an example of simple Monte Carlo.
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Using the the posterior predictive sample

Suppose we have generated a sample from the posterior predictive
distribution x1, x2, . . . , xM .
We can summarize the sample for whatever interests us:

Posterior predictive mean, median, variance - just summarize sample
x1, x2, . . . , xM

Prediction intervals, e.g. with 95% probability, x will be in some
interval- just take the 0.025 and 0.975 sample quantiles of the
sample x1, x2, . . . , xM .
Posterior predictive probability that x = 0 - just count what
proportion of sample are 0.
Posterior predictive probability that x > c, for some c - count what
proportion of sample are > c.
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