MTH5130 2022-2023 January exam

Shu Sasaki

1st December 2022

A1 [A similar example seen]

Firstly, we observe that

$$35x + 55y + 77z = 35x + 11 \cdot (5y + 7z) = 1.$$

We solve 35X + 11Y = 1 and 5y + 7z = Y [5].

By Euclid's algorithm or otherwise, we find that a solution to 35X + 11Y = 1 is given for example by (X,Y) = (-5,16) [3].

On the other hand, to solve 5y+7z=Y=16, we solve 5y+7z=1 and multiply its solution (not necessarily unique, of course) by 16. It is easy to spot a solution to 5y+7z=1; by Euclid's algorithm or otherwise, we see that (y,z)=(3,-2) does the job,. It therefore follows that (y,z)=(48,-32) is a solution to 5y+7z=16 [3].

Combining all these together, (x, y, z) = (-5, 48, -32) is a solution to 35x + 55y + 77z [4].

A2

(a) [A similar example seen] Yes, 7 is a primitive root mod 11 [1].

It follows from Fermat's Last Theorem that $7^{p-1}=7^{10}\equiv 1 \bmod p$. By Lemma 19 that the order of 7 mod 11 is a divisor of 10, i.e. either 1, 2, 5 or 10. Since

$$7^2 = 49 \equiv 5$$
, $7^4 \equiv 5^2 = 25 \equiv 3$, $7^5 \equiv 3 \cdot 7 = 21 \equiv 10$.

the order of $7 \mod 11$ would have to 10 [3]. This means that 7 is a primitive root mod 11.

(b) [A similar example seen] Yes, 25 is a quadratic residue mod 11 [1].

This simply follows from observing that 25 is a square whether it is modulo 11 or not, or computing the Legendre symbol

$$\left(\frac{25}{11}\right) \stackrel{R1}{=} \left(\frac{5}{11}\right)^2 = 1$$

[3].

(c) [A similar example seen] No, 2 is not a square mod 9 [1].

Since 9 is not a prime number, it is not possible to use Legendre symbol to answer the question. We simply list all square numbers mod 9:

Since 2 is not in the list mod 9, it is not a square mod 9 [3].

- (d) [A similar example seen] Yes [1]. Firstly, observe that $1013 \equiv 1 \mod 3$ and $\left(\frac{17}{1013}\right) = -1$. It therefore follows from Proposition 29 ([2] for the reference) that $17^{\frac{1013-1}{4}} = 17^{253}$ is a solution to $x^2 \equiv -1 \mod 1013$ [1].
 - **Q3.** (a) [A similar example seen] We firstly compute $r = [\overline{1;2}]$:

$$r = [1; 2, r] = 1 + \frac{1}{2 + \frac{1}{r}} = 1 + \frac{r}{2r + 1} = \frac{3r + 1}{2r + 1}$$

[3].

Hence \boldsymbol{r} satisfies the quadratic equation

$$2r^2 - 2r - 1 = 0$$

[1].

By the quadratic formula, r is $\frac{1\pm\sqrt{3}}{2}$, but by definition r>1, hence $r=\frac{1+\sqrt{3}}{2}$ [2]. Substituting this into

$$[1;1,r] = 1 + \frac{1}{1 + \frac{1}{r}},$$

we obtain $1 + \frac{\sqrt{3}}{3} \, [\mathbf{2}].$

- (b) [A similar example seen] Theorem 42 ([2]) asserts that any convergent r_n , with $n \ge 2$, defines a good (rational) approximation to a given number. For example, $r_2 = [2; 1, 2] = \frac{8}{3}$ is a good approximation to $[2; 1, 2, 1, 1, 4, \dots]$ [4].
- (c)[partly seen] This is Theorem 45. Suppose that the given irrational number r has continued fraction $[\overline{\alpha}; \alpha_1, \ldots, \alpha_{l-1}]$ of cycle length $l \geq 1$ (to clarify, by l = 1, we mean $[\overline{\alpha}]$).

By assumption, we know that $r=[\alpha;\alpha_1,\ldots,\alpha_{l-1},r]$ for $l\geq 1$. It then follows from Lemma 40 (which can be proved by induction) [6] (reference to the lemma qualifies for the full 6 marks) that

$$r = \frac{rs_{l-1} + s_{l-2}}{rt_{l-1} + t_{l-2}}$$

where $\frac{s_n}{t_n}$ denote the n-th convergent to r. It follows from this that r satisfies

$$t_{l-1}r^2 + (t_{l-2} - s_{l-1})r - s_{l-2} = 0,$$

where, by definition, $t_{l-1} > 0$ [3]. Since the continued fraction is infinite, r is not rational and this forces r to be irrational (i.e. the discriminant is non-zero) [1].

2

A4.

(a) [A similar example seen] We run the algorithm to find $\sqrt{23}=[4;\overline{1,3,1,8}]$:

$$\alpha = \lfloor \sqrt{23} \rfloor = 4 \qquad \Rightarrow \qquad \rho_1 = \frac{1}{\sqrt{23} - 4} = \frac{\sqrt{23} + 4}{7}$$

$$\alpha_1 = \lfloor \frac{\sqrt{23} + 4}{7} \rfloor = 1 \Rightarrow \qquad \rho_2 = \frac{1}{\frac{\sqrt{23} + 4}{7} - 1} = \frac{\sqrt{23} + 3}{2}$$

$$\alpha_2 = \lfloor \frac{\sqrt{23} + 3}{2} \rfloor = 3 \Rightarrow \qquad \rho_3 = \frac{1}{\frac{\sqrt{23} + 3}{2} - 3} = \frac{\sqrt{23} + 3}{7}$$

$$\alpha_3 = \lfloor \frac{\sqrt{23} + 3}{7} \rfloor = 1 \Rightarrow \qquad \rho_4 = \frac{1}{\frac{\sqrt{23} + 3}{7} - 1} = \sqrt{23} + 4$$

$$\alpha_4 = \lfloor \sqrt{23} + 4 \rfloor = 8 \Rightarrow \rho_5 = \frac{1}{(\sqrt{23} + 4) - 8} = \frac{1}{\sqrt{23} - 4} = \rho_1$$

$$\alpha_5 = \alpha_1 \Rightarrow \qquad \rho_5 = \rho_2$$

$$\vdots$$

[8]

(b) [A similar example seen] From (a), the cycle length is l=4, hence (s_3,t_3) is the fundamental solution [1].

As the convergents are:

$$\frac{s_1}{t_1} = \frac{\alpha_1 s_0 + s_{-1}}{\alpha_1 t_0 + t_{-1}} = \frac{1 \cdot 4 + 1}{1 \cdot 1 + 0} = \frac{5}{1},
\frac{s_2}{t_2} = \frac{\alpha_2 s_1 + s_0}{\alpha_2 t_1 + t_0} = \frac{3 \cdot 5 + 4}{3 \cdot 1 + 1} = \frac{19}{4},
\frac{s_3}{t_3} = \frac{\alpha_3 s_2 + s_1}{\alpha_3 t_2 + t_1} = \frac{1 \cdot 19 + 5}{1 \cdot 4 + 1} = \frac{24}{5},$$

we see that the fundamental solution is (24,5) [3].

(c) [A similar example seen] Since 7=2l-1 (with cycle length l=4), it follows from Theorem 48 [3] that the 7-th convergent are given by

$$(24 + 5\sqrt{23})^2 = 1151 + 240\sqrt{23}$$

[**4**], i.e. (1151, 240) [**1**].

A5 [A similar example seen]

Observe that since

$$x^2 + y^2 = 116 = 5^2 \cdot 29,$$

[2] it suffices to solve $x^2 + y^2 = 29$ (and multiply a solution by 5).

Step 1: Find z such that $z^2 \equiv -1 \mod 29$. By trial and error, we find that $\left(\frac{2}{29}\right) = -1$ by R3 for example (29 $\equiv 5 \ \mathrm{mod}\ 8$). Hence it follows from Proposition 29 that

$$z = 2^{\frac{29-1}{4}} = 2^7 = 128 \equiv 12$$

 $\mod 29$ satisfies $z^2 \equiv -1 \mod 29$ [2].

Step 2:

$$\alpha = \lfloor \frac{12}{29} \rfloor = 0 \quad \Rightarrow \quad \rho_1 = \frac{1}{\frac{12}{29} - 0} = \frac{29}{12}$$

$$\alpha_1 = \lfloor \frac{29}{12} \rfloor = 2 \quad \Rightarrow \quad \rho_2 = \frac{1}{\frac{29}{12} - 2} = \frac{12}{5}$$

$$\alpha_2 = \lfloor \frac{12}{5} \rfloor = 2 \quad \Rightarrow \quad \rho_3 = \frac{1}{\frac{12}{5} - 2} = \frac{5}{2}$$

$$\alpha_3 = \lfloor \frac{5}{2} \rfloor = 2 \quad \Rightarrow \quad \rho_4 = \frac{1}{\frac{5}{2} - 2} = 2$$

$$\alpha_4 = \lfloor 2 \rfloor = 2$$

Hence $\frac{12}{29} = [0; 2, 2, 2, 2]$ [2].

It follows from this that the convergents to $\frac{z}{n} = \frac{12}{20}$ are:

$$r_1 = [0; 2] = \frac{1}{2}, r_2 = [0; 2, 2] = \frac{2}{5}, r_3 = [0; 2, 2, 2] = \frac{5}{12}, r_4 = [0; 2, 2, 2, 2] = \frac{12}{29}$$

Step 3: Since $t_2=5<\sqrt{29}< t_3=12$, we see that $(x,y)=(5,29\cdot 2-12\cdot 5)=(5,-2)$ is a solution to $x^2+y^2=29$. It therefore follows that a solution to $x^2+y^2=725$ is (25,-10) [2].

A6

- (a) [A similar example seen] $\frac{26}{3}$ lies in $\mathbb{Q} \mathbb{Z}$, hence it is not an algebraic integer. [1]. It is proved in lectures that the algebraic integers in $\mathbb Q$ are exactly $\mathbb Z\left[\boldsymbol 2\right]$.
 - (b) [A similar example seen] π is a transcendental number [2], therefore not algebraic [1].
- (c) [A similar example seen] If $d\equiv 1$ mod 4, the subring of algebraic integers in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ (Proposition 62) [1], but there is no pair of integers (a, b) that satisfies

$$1 + \frac{\sqrt{21}}{2} = a + b \left(\frac{1 + \sqrt{21}}{2} \right)$$

(necessarily b=1) [1]. Hence $1+\frac{\sqrt{21}}{2}$ is not an algebraic integer [1].

(d) [A similar example seen] Yes [1], as it is a root of the monic polynomial x^2+x+1 [2]. Alternatively, one can make appeal to Proposition 62 that the ring of integers in $\mathbb{Q}(\sqrt{-3})$ is $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$ (as $-3\equiv 1 \mod 4$) and

$$-\frac{1}{2} + \frac{\sqrt{-3}}{2} = (-1) + 1 \cdot \frac{1 + \sqrt{-3}}{2} \in \mathbb{Z}[\frac{1 + \sqrt{-3}}{2}].$$

(e). [not seen] If we let $\alpha=1+\sqrt[3]{3}$, we see that $\alpha^3-3\alpha^2+3\alpha-4=0$ [2]. This is a monic polynomial with integer coefficients, hence α is an algebraic integer [1].