MTH5130 2022-2023 January exam

Shu Sasaki

1st December 2022

A1 [A similar example seen]

Firstly, we observe that

$$
35 x+55 y+77 z=35 x+11 \cdot(5 y+7 z)=1
$$

We solve $35 X+11 Y=1$ and $5 y+7 z=Y[\mathbf{5}]$.
By Euclid's algorithm or otherwise, we find that a solution to $35 X+11 Y=1$ is given for example by $(X, Y)=(-5,16)[\mathbf{3}]$.

On the other hand, to solve $5 y+7 z=Y=16$, we solve $5 y+7 z=1$ and multiply its solution (not necessarily unique, of course) by 16 . It is easy to spot a solution to $5 y+7 z=1$; by Euclid's algorithm or otherwise, we see that $(y, z)=(3,-2)$ does the job,. It therefore follows that $(y, z)=(48,-32)$ is a solution to $5 y+7 z=16[\mathbf{3}]$.

Combining all these together, $(x, y, z)=(-5,48,-32)$ is a solution to $35 x+55 y+77 z[\mathbf{4}]$.

A2

(a) [A similar example seen] Yes, 7 is a primitive root mod $11[\mathbf{1}]$.

It follows from Fermat's Last Theorem that $7^{p-1}=7^{10} \equiv 1 \bmod p$. By Lemma 19 that the order of $7 \bmod 11$ is a divisor of 10 , i.e. either $1,2,5$ or 10 . Since

$$
7^{2}=49 \equiv 5,7^{4} \equiv 5^{2}=25 \equiv 3,7^{5} \equiv 3 \cdot 7=21 \equiv 10
$$

the order of $7 \bmod 11$ would have to $10[\mathbf{3}]$. This means that 7 is a primitive root $\bmod 11$.
(b) [A similar example seen] Yes, 25 is a quadratic residue mod 11 [$\mathbf{1}]$.

This simply follows from observing that 25 is a square whether it is modulo 11 or not, or computing the Legendre symbol

$$
\left(\frac{25}{11}\right) \stackrel{R 1}{=}\left(\frac{5}{11}\right)^{2}=1
$$

[3].
(c) [A similar example seen] No, 2 is not a square $\bmod 9[\mathbf{1}]$.

Since 9 is not a prime number, it is not possible to use Legendre symbol to answer the question. We simply list all square numbers mod 9 :

$$
\begin{array}{c|ccccccccc}
z & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline z^{2} & 0 & 1 & 4 & 0 & 7 & 7 & 0 & 4 & 1
\end{array}
$$

Since 2 is not in the list $\bmod 9$, it is not a square $\bmod 9[3]$.
(d) $\left[\right.$ A similar example seen] Yes $[\mathbf{1}]$. Firstly, observe that $1013 \equiv 1 \bmod 3$ and $\left(\frac{17}{1013}\right)=-1$. It therefore follows from Proposition 29 ([2] for the reference) that $17^{\frac{1013-1}{4}}=17^{253}$ is a solution to $x^{2} \equiv-1 \bmod 1013[\mathbf{1}]$.

Q3. (a) [A similar example seen] We firstly compute $r=[\overline{1 ; 2}]$:

$$
r=[1 ; 2, r]=1+\frac{1}{2+\frac{1}{r}}=1+\frac{r}{2 r+1}=\frac{3 r+1}{2 r+1}
$$

[3].
Hence r satisfies the quadratic equation

$$
2 r^{2}-2 r-1=0
$$

[1].
By the quadratic formula, r is $\frac{1 \pm \sqrt{3}}{2}$, but by definition $r>1$, hence $r=\frac{1+\sqrt{3}}{2}[\mathbf{2}]$.
Substituting this into

$$
[1 ; 1, r]=1+\frac{1}{1+\frac{1}{r}}
$$

we obtain $1+\frac{\sqrt{3}}{3}[\mathbf{2}]$.
(b) [A similar example seen] Theorem 42 ([2]) asserts that any convergent r_{n}, with $n \geq 2$, defines a good (rational) approximation to a given number. For example, $r_{2}=[2 ; 1,2]=\frac{8}{3}$ is a good approximation to $[2 ; 1,2,1,1,4, \ldots][4]$.
(c)[partly seen] This is Theorem 45. Suppose that the given irrational number r has continued fraction $\left[\overline{\alpha ; \alpha_{1}, \ldots, \alpha_{l-1}}\right]$ of cycle length $l \geq 1$ (to clarify, by $l=1$, we mean $[\bar{\alpha}]$).

By assumption, we know that $r=\left[\alpha ; \alpha_{1}, \ldots, \alpha_{l-1}, r\right]$ for $l \geq 1$. It then follows from Lemma 40 (which can be proved by induction) [6] (reference to the lemma qualifies for the full 6 marks) that

$$
r=\frac{r s_{l-1}+s_{l-2}}{r t_{l-1}+t_{l-2}}
$$

where $\frac{s_{n}}{t_{n}}$ denote the n-th convergent to r. It follows from this that r satisfies

$$
t_{l-1} r^{2}+\left(t_{l-2}-s_{l-1}\right) r-s_{l-2}=0
$$

where, by definition, $t_{l-1}>0[\mathbf{3}]$. Since the continued fraction is infinite, r is not rational and this forces r to be irrational (i.e. the discriminant is non-zero) [1].

A4.

(a) [A similar example seen] We run the algorithm to find $\sqrt{23}=[4 ; \overline{1,3,1,8}]$:

\[

\]

[8]

(b) [A similar example seen] From (a), the cycle length is $l=4$, hence $\left(s_{3}, t_{3}\right)$ is the fundamental solution $[\mathbf{1}]$.

As the convergents are:

$$
\begin{aligned}
& \frac{s_{1}}{t_{1}}=\frac{\alpha_{1} s_{0}+s_{-1}}{\alpha_{1} t_{0}+t_{-1}}=\frac{1 \cdot 4+1}{1 \cdot 1+0}=\frac{5}{1} \\
& \frac{s_{2}}{t_{2}}=\frac{\alpha_{2} s_{1}+s_{0}}{\alpha_{2} t_{1}+t_{0}}=\frac{3 \cdot 5+4}{3 \cdot 1+1}=\frac{19}{4} \\
& \frac{s_{3}}{t_{3}}=\frac{\alpha_{3} s_{2}+s_{1}}{\alpha_{3} t_{2}+t_{1}}=\frac{1 \cdot 19+5}{1 \cdot 4+1}=\frac{24}{5}
\end{aligned}
$$

we see that the fundamental solution is $(24,5)$ [$\mathbf{3}]$.
(c) [A similar example seen] Since $7=2 l-1$ (with cycle length $l=4$), it follows from Theorem 48 [3] that the 7-th convergent are given by

$$
(24+5 \sqrt{23})^{2}=1151+240 \sqrt{23}
$$

[4], i.e. $(1151,240)[\mathbf{1}]$.
A5 [A similar example seen]

Observe that since

$$
x^{2}+y^{2}=116=5^{2} \cdot 29
$$

[2] it suffices to solve $x^{2}+y^{2}=29$ (and multiply a solution by 5).

Step 1: Find z such that $z^{2} \equiv-1 \bmod 29$. By trial and error, we find that $\left(\frac{2}{29}\right)=-1$ by $R 3$ for example ($29 \equiv 5 \bmod 8$). Hence it follows from Proposition 29 that

$$
z=2^{\frac{29-1}{4}}=2^{7}=128 \equiv 12
$$

$\bmod 29$ satisfies $z^{2} \equiv-1 \bmod 29[\mathbf{2}]$.
Step 2:

$$
\begin{array}{ll}
\alpha=\left\lfloor\frac{12}{29}\right\rfloor=0 & \Rightarrow \quad \rho_{1}=\frac{1}{\frac{12}{29}-0}=\frac{29}{12} \\
\alpha_{1}=\left\lfloor\frac{29}{12}\right\rfloor=2 & \Rightarrow \rho_{2}=\frac{1}{\frac{29}{12}-2}=\frac{12}{5} \\
& \swarrow \\
\alpha_{2}=\left\lfloor\frac{12}{5}\right\rfloor=2 & \Rightarrow \rho_{3}=\frac{1}{\frac{12}{5}-2}=\frac{5}{2} \\
& \swarrow \\
\alpha_{3}=\left\lfloor\frac{5}{2}\right\rfloor=2 & \Rightarrow \quad \rho_{4}=\frac{1}{\frac{5}{2}-2}=2 \\
\alpha_{4}=\lfloor 2\rfloor=2 & \swarrow
\end{array}
$$

Hence $\frac{12}{29}=[0 ; 2,2,2,2][\mathbf{2}]$.
It follows from this that the convergents to $\frac{z}{p}=\frac{12}{29}$ are:

$$
r_{1}=[0 ; 2]=\frac{1}{2}, r_{2}=[0 ; 2,2]=\frac{2}{5}, r_{3}=[0 ; 2,2,2]=\frac{5}{12}, r_{4}=[0 ; 2,2,2,2]=\frac{12}{29}
$$

[2].
Step 3: Since $t_{2}=5<\sqrt{29}<t_{3}=12$, we see that $(x, y)=(5,29 \cdot 2-12 \cdot 5)=(5,-2)$ is a solution to $x^{2}+y^{2}=29$. It therefore follows that a solution to $x^{2}+y^{2}=725$ is $(25,-10)[\mathbf{2}]$.

A6
(a) [A similar example seen] $\frac{26}{3}$ lies in $\mathbb{Q}-\mathbb{Z}$, hence it is not an algebraic integer. [1]. It is proved in lectures that the algebraic integers in \mathbb{Q} are exactly $\mathbb{Z}[\mathbf{2}]$.
(b) [A similar example seen] π is a transcendental number [$\mathbf{2}]$, therefore not algebraic $[\mathbf{1}]$.
(c) [A similar example seen] If $d \equiv 1 \bmod 4$, the subring of algebraic integers in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ (Proposition 62) [1], but there is no pair of integers (a, b) that satisfies

$$
1+\frac{\sqrt{21}}{2}=a+b\left(\frac{1+\sqrt{21}}{2}\right)
$$

(necessarily $b=1$) $[\mathbf{1}]$. Hence $1+\frac{\sqrt{21}}{2}$ is not an algebraic integer $[\mathbf{1}]$.
(d) [A similar example seen] Yes $[\mathbf{1}]$, as it is a root of the monic polynomial $x^{2}+x+1[\mathbf{2}]$. Alternatively, one can make appeal to Proposition 62 that the ring of integers in $\mathbb{Q}(\sqrt{-3})$ is $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ (as $-3 \equiv 1 \bmod 4)$ and

$$
-\frac{1}{2}+\frac{\sqrt{-3}}{2}=(-1)+1 \cdot \frac{1+\sqrt{-3}}{2} \in \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]
$$

(e). [not seen] If we let $\alpha=1+\sqrt[3]{3}$, we see that $\alpha^{3}-3 \alpha^{2}+3 \alpha-4=0[\mathbf{2}]$. This is a monic polynomial with integer coefficients, hence α is an algebraic integer [1].

