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A1l [A similar example seen]

Firstly, we observe that
35z 4+ b5y + 772z = 3bx + 11 - (by + 7z) = 1.

Wesolve 35X + 11Y = 1and 5y + 7z = Y [5].

By Euclid’s algorithm or otherwise, we find that a solutionto 35X + 11Y = 1is given for example
by (X,Y) = (-5, 16) [3].

Onthe other hand, tosolve 5y +7z = Y = 16, we solve 5y + 7z = 1 and multiply its solution (not
necessarily unique, of course) by 16. It is easy to spot a solution to 5y + 7z = 1; by Euclid’s algorithm
or otherwise, we see that (y, z) = (3, —2) does the job,. It therefore follows that (y, z) = (48, —32)
is a solution to 5y + 7z = 16 [3].

Combining all these together, (z,y, z) = (-5, 48, —32) is a solution to 35z + 55y + 77z [4].

A2

(a) [A similar example seen] Yes, 7 is a primitive root mod 11 [1].
It follows from Fermat’s Last Theorem that 77~ = 710 = 1 mod p. By Lemma 19 that the order
of 7mod 11 is a divisor of 10, i.e. either 1,2, 5 or 10. Since

72=49=5, 7'=52=25=3, 7°=3.7=21=10,
the order of 7 mod 11 would have to 10 [3]. This means that 7 is a primitive root mod 11.

(b) [A similar example seen] Yes, 25 is a quadratic residue mod 11 [1].
This simply follows from observing that 25 is a square whether it is modulo 11 or not, or comput-

ing the Legendre symbol
B\ (5)
1)  \11)
[3].

(c) [A similar example seen] No, 2 is not a square mod 9 [1].
Since 9 is not a prime number, it is not possible to use Legendre symbol to answer the question.
We simply list all square numbers mod 9:

2|01 2345678
2014077041

Since 2 is not in the list mod 9, it is not a square mod 9 [3].
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(d) [A similar example seen] Yes [1]. Firstly, observe that 1013 = 1 mod 3 and (10;3> = —1.
1013—1

It therefore follows from Proposition 29 ([2] for the reference) that 17~ 4 = 17253 is a solution to
2 = —1mod 1013 [1].

Q3. (a) [A similar example seen] We firstly compute r = [1; 2]:

1 r 3r+1
r=2r =1+ TS S|

T
2+ -
T

3].
Hence r satisfies the quadratic equation

2 —2r—1=0

1].
1++v3 1 3
By the quadratic formula, r is 2\f’ but by definition » > 1, hencer = +2\[ [2].
Substituting this into
1
LLr]=1+—7,
1+ =
r

V3

we obtain 1 + 5 [2].

(b) [A similar example seen] Theorem 42 ([2]) asserts that any convergent r,,, with n > 2, defines

8
a good (rational) approximation to a given number. For example, ro = [2;1,2] = 3 is a good approx-
imationto [2;1,2,1,1,4,...][4].

(c)[partly seen] This is Theorem 45. Suppose that the given irrational number r has continued
fraction [a;ar, -, a;_1] of cycle length I > 1 (to clarify, by I = 1, we mean [@]).

By assumption, we know that r = [a; aq,...,aq_1,7] forl > 1. It then follows from Lemma 40
(which can be proved by induction) [6] (reference to the lemma qualifies for the full 6 marks) that

T R o
rt—1 +ti—2

where i—” denote the n-th convergent to r. It follows from this that r satisfies
n

trar? + (g — s1-1)r — 812 = 0,

where, by definition, ¢,_; > 0 [3]. Since the continued fraction is infinite, r is not rational and this
forces r to be irrational (i.e. the discriminant is non-zero) [1].

A4.

(a) [A similar example seen] We run the algorithm to find v/23 = [4;1, 3, 1, 8]:



o= V23| =4 L _ v+

= = —
N I 7
v
_ VB4 1 V2343
v
_ V843 1 V2343
w=——]=3 = p3*\/§+3_37 7
/E v
23+ 3 1
ch—l_fj—l = p4—\/§+3_1—\/ﬁ+4
< 1 1
ap=[V23+4] =8 = p5= = =
4 L J Ps (\/ﬁ+4)—8 \/ﬁ—él 1
v
a5 = Qg = P5 = P2
v

8]

(b) [A similar example seen] From (a), the cycle length is I = 4, hence (s3, t3) is the fundamental
solution [1].
As the convergents are:

st aispt+s-—1 1-441 5
t; Ozlt()—l-t_lil‘l—l-(]il’
52 _ 04281—|—80_3'5+4_B
to N a2t1+t0_3-1+1_4’
53 _ agsy+s1  1-19+5 2

t3 Oégtg—l—tl_ 1-4+41 _E’

we see that the fundamental solution is (24, 5) [3].

(c) [A similar example seen] Since 7 = 2] — 1 (with cycle length [ = 4), it follows from Theorem
48 [3] that the 7-th convergent are given by

(24 + 5v/23)? = 1151 + 240v/23
[4],i.e. (1151,240) [1].
A5 [A similar example seen]

Observe that since
22 +y? =116 = 52 - 29,

[2] it suffices to solve 22 + y? = 29 (and multiply a solution by 5).
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Step 1: Find z such that 22 = —1 mod 29. By trial and error, we find that <29> = —1 by R3 for

example (29 = 5 mod 8). Hence it follows from Proposition 29 that

2=2"17 =2"=128=12

mod 29 satisfies 22 = —1 mod 29 [2].

Step 2:
12 1 29
o =l M=) 1
29 < 1 12
_ =92 = —
a1 L12J P2 % _ 5
12 < 1 5)
a2 L 5 J P3 152 _9 9
5} < 1
asg L2J P4 % 9
/
ay = 2] =2

Hence L2 [0;2,2,2,2] [2]
29 - ) ) 9 ) . 12
It follows from this that the convergents to - 30 are:
p

1 2 ) 12
=10;2| == =10;2,2| = = =10;2,2,2)| = — =10;2,2,2,2] = —
1 [0, ] 27T2 [07 ) ] 53T3 [Oa 3 4y } 123T4 [Oa ) Ly 4y ] 29
2]

Step 3: Since ta = 5 < V29 < t3 = 12, we see that (z,y) = (5,29-2 —12-5) = (5,—2)is a
solution to 2% + y? = 29. It therefore follows that a solution to 22 + y2 = 725 is (25, —10) [2].

A6

2
(a) [A similar example seen] 36 liesin Q@ — Z, hence it is not an algebraic integer. [1]. It is proved
in lectures that the algebraic integers in Q are exactly Z [2] .

(b) [A similar example seen] 7 is a transcendental number [2], therefore not algebraic [1].

1
(c) [Asimilar example seen] If d = 1 mod 4, the subring of algebraicintegersin Q(v/d) is Z| +2\/g]
(Proposition 62) [1], but there is no pair of integers (a, b) that satisfies

21 1+ /21
1+\2ﬁ:a+b<+2\ﬁ)

21
(necessarily b = 1) [1]. Hence 1 + \/; is not an algebraic integer [1].



(d) [A similar example seen] Yes [1], as it is a root of the monic polynomial 22 + x + 1 [2]. Alternat-

1 N/ —
ively, one can make appeal to Proposition 62 that the ring of integers in Q(1/—3) is Z[%?)

—3 = 1mod4) and

| (as

1++/-3
2

1++v/-3
SR . g S S +2 €z

[ J

(e). [not seen] If we let & = 1 + /3, we see that a® — 302 + 3a — 4 = 0 [2]. This is a monic
polynomial with integer coefficients, hence « is an algebraic integer [1].



