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A1 [A similar example seen]

Firstly, we observe that

35x+ 55y + 77z = 35x+ 11 · (5y + 7z) = 1.

We solve 35X + 11Y = 1 and 5y + 7z = Y [5].
By Euclid’s algorithm or otherwise, we find that a solution to 35X+11Y = 1 is given for example

by (X,Y ) = (−5, 16) [3].
On the other hand, to solve 5y+7z = Y = 16, we solve 5y+7z = 1 and multiply its solution (not

necessarily unique, of course) by 16. It is easy to spot a solution to 5y+7z = 1; by Euclid’s algorithm
or otherwise, we see that (y, z) = (3,−2) does the job,. It therefore follows that (y, z) = (48,−32)
is a solution to 5y + 7z = 16 [3].

Combining all these together, (x, y, z) = (−5, 48,−32) is a solution to 35x+ 55y + 77z [4].

A2

(a) [A similar example seen] Yes, 7 is a primitive root mod 11 [1].
It follows from Fermat’s Last Theorem that 7p−1 = 710 ≡ 1 mod p. By Lemma 19 that the order

of 7 mod 11 is a divisor of 10, i.e. either 1, 2, 5 or 10. Since

72 = 49 ≡ 5, 74 ≡ 52 = 25 ≡ 3, 75 ≡ 3 · 7 = 21 ≡ 10,

the order of 7 mod 11 would have to 10 [3]. This means that 7 is a primitive root mod 11.

(b) [A similar example seen] Yes, 25 is a quadratic residue mod 11 [1].
This simply follows from observing that 25 is a square whether it is modulo 11 or not, or comput-

ing the Legendre symbol (
25

11

)
R1
=

(
5

11

)2

= 1

[3].
(c) [A similar example seen] No, 2 is not a square mod 9 [1].
Since 9 is not a prime number, it is not possible to use Legendre symbol to answer the question.

We simply list all square numbers mod 9:

z 0 1 2 3 4 5 6 7 8

z2 0 1 4 0 7 7 0 4 1

Since 2 is not in the list mod 9, it is not a square mod 9 [3].
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(d) [A similar example seen] Yes [1]. Firstly, observe that 1013 ≡ 1 mod 3 and
(

17

1013

)
= −1.

It therefore follows from Proposition 29 ([2] for the reference) that 17
1013−1

4 = 17253 is a solution to
x2 ≡ −1 mod 1013 [1].

Q3. (a) [A similar example seen] We firstly compute r = [1; 2]:

r = [1; 2, r] = 1 +
1

2 +
1

r

= 1 +
r

2r + 1
=

3r + 1

2r + 1

[3].
Hence r satisfies the quadratic equation

2r2 − 2r − 1 = 0

[1].

By the quadratic formula, r is
1±
√
3

2
, but by definition r > 1, hence r =

1 +
√
3

2
[2].

Substituting this into

[1; 1, r] = 1 +
1

1 +
1

r

,

we obtain 1 +

√
3

3
[2].

(b) [A similar example seen] Theorem 42 ([2]) asserts that any convergent rn, with n ≥ 2, defines

a good (rational) approximation to a given number. For example, r2 = [2; 1, 2] =
8

3
is a good approx-

imation to [2; 1, 2, 1, 1, 4, . . . ] [4].

(c)[partly seen] This is Theorem 45. Suppose that the given irrational number r has continued
fraction [α;α1, . . . , αl−1] of cycle length l ≥ 1 (to clarify, by l = 1, we mean [α]).

By assumption, we know that r = [α;α1, . . . , αl−1, r] for l ≥ 1. It then follows from Lemma 40
(which can be proved by induction) [6] (reference to the lemma qualifies for the full 6 marks) that

r =
rsl−1 + sl−2
rtl−1 + tl−2

where
sn
tn

denote the n-th convergent to r. It follows from this that r satisfies

tl−1r
2 + (tl−2 − sl−1)r − sl−2 = 0,

where, by definition, tl−1 > 0 [3]. Since the continued fraction is infinite, r is not rational and this
forces r to be irrational (i.e. the discriminant is non-zero) [1].

A4.

(a) [A similar example seen] We run the algorithm to find
√
23 = [4; 1, 3, 1, 8]:
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α = b
√
23c = 4 ⇒ ρ1 =

1√
23− 4

=

√
23 + 4

7
↙

α1 = b
√
23 + 4

7
c = 1 ⇒ ρ2 =

1
√
23+4
7 − 1

=

√
23 + 3

2

↙

α2 = b
√
23 + 3

2
c = 3 ⇒ ρ3 =

1
√
23+3
2 − 3

=

√
23 + 3

7

↙

α3 = b
√
23 + 3

7
c = 1 ⇒ ρ4 =

1
√
23+3
7 − 1

=
√
23 + 4

↙
α4 = b

√
23 + 4c = 8 ⇒ ρ5 =

1

(
√
23 + 4)− 8

=
1√

23− 4
= ρ1

↙
α5 = α1 ⇒ ρ5 = ρ2

↙
...

[8]

(b) [A similar example seen] From (a), the cycle length is l = 4, hence (s3, t3) is the fundamental
solution [1].

As the convergents are:

s1
t1

=
α1s0 + s−1
α1t0 + t−1

=
1 · 4 + 1

1 · 1 + 0
=

5

1
,

s2
t2

=
α2s1 + s0
α2t1 + t0

=
3 · 5 + 4

3 · 1 + 1
=

19

4
,

s3
t3

=
α3s2 + s1
α3t2 + t1

=
1 · 19 + 5

1 · 4 + 1
=

24

5
,

. . .

we see that the fundamental solution is (24, 5) [3].

(c) [A similar example seen] Since 7 = 2l − 1 (with cycle length l = 4), it follows from Theorem
48 [3] that the 7-th convergent are given by

(24 + 5
√
23)2 = 1151 + 240

√
23

[4], i.e. (1151, 240) [1].

A5 [A similar example seen]

Observe that since
x2 + y2 = 116 = 52 · 29,

[2] it su�ices to solve x2 + y2 = 29 (and multiply a solution by 5).
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Step 1: Find z such that z2 ≡ −1 mod 29. By trial and error, we find that
(

2

29

)
= −1 by R3 for

example (29 ≡ 5 mod 8). Hence it follows from Proposition 29 that

z = 2
29−1

4 = 27 = 128 ≡ 12

mod 29 satisfies z2 ≡ −1 mod 29 [2].

Step 2:

α = b12
29
c = 0 ⇒ ρ1 =

1
12
29 − 0

=
29

12

↙
α1 = b

29

12
c = 2 ⇒ ρ2 =

1
29
12 − 2

=
12

5

↙
α2 = b

12

5
c = 2 ⇒ ρ3 =

1
12
5 − 2

=
5

2

↙
α3 = b

5

2
c = 2 ⇒ ρ4 =

1
5
2 − 2

= 2

↙
α4 = b2c = 2

Hence
12

29
= [0; 2, 2, 2, 2] [2].

It follows from this that the convergents to
z

p
=

12

29
are:

r1 = [0; 2] =
1

2
, r2 = [0; 2, 2] =

2

5
, r3 = [0; 2, 2, 2] =

5

12
, r4 = [0; 2, 2, 2, 2] =

12

29

[2].
Step 3: Since t2 = 5 <

√
29 < t3 = 12, we see that (x, y) = (5, 29 · 2 − 12 · 5) = (5,−2) is a

solution to x2 + y2 = 29. It therefore follows that a solution to x2 + y2 = 725 is (25,−10) [2].

A6

(a) [A similar example seen]
26

3
lies in Q− Z, hence it is not an algebraic integer. [1]. It is proved

in lectures that the algebraic integers in Q are exactly Z [2] .

(b) [A similar example seen] π is a transcendental number [2], therefore not algebraic [1].

(c) [A similar example seen] Ifd ≡ 1mod4, the subring of algebraic integers inQ(
√
d) isZ[

1 +
√
d

2
]

(Proposition 62) [1], but there is no pair of integers (a, b) that satisfies

1 +

√
21

2
= a+ b

(
1 +
√
21

2

)

(necessarily b = 1) [1]. Hence 1 +

√
21

2
is not an algebraic integer [1].
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(d) [A similar example seen] Yes [1], as it is a root of the monic polynomial x2+x+1 [2]. Alternat-

ively, one can make appeal to Proposition 62 that the ring of integers in Q(
√
−3) is Z[

1 +
√
−3

2
] (as

−3 ≡ 1 mod 4) and

−1

2
+

√
−3
2

= (−1) + 1 · 1 +
√
−3

2
∈ Z[

1 +
√
−3

2
].

(e). [not seen] If we let α = 1 + 3
√
3, we see that α3 − 3α2 + 3α − 4 = 0 [2]. This is a monic

polynomial with integer coe�icients, hence α is an algebraic integer [1].
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