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Today's lecture

@ Review of the symmetric Metropolis-Hastings (MH)

@ Understand implementation issues with MH.



Symmetric MH algorithm

Goal: Generate a Markov chain 61, 6,,... from the posterior p(6 |y)

—
Define g(6) = p(0) p(y | 6) the non-normalized posterior den5|ty/Bayes
N S~

numerator.

o Start_with 6;, randomly such that g(6;) > 0. For each i > 1:

@ \Generate I//NN( i_1,b%), for some b > 0.
@ Compute the‘p\rm& acceptance

r:min<17 g(y) )Zmin<1’pp(w)p(y!\/f) )

— g(6;-1) (8i—1)p(y | 6:1)
N
@/ Generate U ~ U|0,1]. Set
 —
6 — v, ifU <r
= | 0;_1, otherwise
—






Working on the log scale

o Let¥ (V1,...,)y,) be the observed data. The likelihood p(y0) is

typically a product of p(y; | 0)

@—HPMG

@ For numerical stability, we usuaIIy do the computations using the log
of the posterior density to work with sums instead of products.

-
A )

@ Define (09 3 ((M

Z(8) =log(p(8) p(y | 0)) = log(p(0)) +log(p(y|8)),

T N

the log of the posterior density (up to a constant).




-n the log scale

@ So, the log of the likelihood is

log (p = Zlog p(yi|9))

@ The acceptance probability is

0 =min (0, Z(y) — Z(6i—1)).
— N T~—r—



( SWMH on the log scale

—
Define £(0) =1log (p(0) p(y | 8)) =1log(p(0))+log(p(y|0)),
the log of the posterior defisity (up to a constant) a

Start Witrandomly. Foreachi>1:
@ Generate y ~ N(6,_1,D°), for som 0.

@ Compute the probability of acceptance

0 =min (0, Z(y) — Z(6;-1)).

@ Generate U ~ U|0,1]. Set

v, if logU < 0

| = —_—
— 6;_1, otherwise

?—



Board example: Exponential data/Gamma prior

See also exercise sheet 9

@ The time until failure for a type of light bulb is exponentially
distributed With_weter 6 > 0, where 0 is unknown.

o We observe n bulbs, with failure times 71,...,7,.

o We assume a Gamma(a,3) prior distribution for 6, where ot >0
and B > 0 are known. o

hat is the posterior pdf for 8 given the data t = (¢1,...,t,)7
Write down the steps of the Metropolis-Hastings algorithm to
simulate realisations from the posterior distribution by using a
normal%posal distribution with standard deviation b.
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Board example: Exponential data/Gamma prior

Let t = (¢,,...,t,) be independent and identically distributed data from
exponential(6). We assume a Gamma(,3) prior distribution for 6. In
the following R code, the data  is denotedﬁby t, 6 by theta, o by alpha
and B by beta. We want to simulate from the posterior of 6, p(6 |1).

log.post = function(theta)

{
log.likelihood = dexp(t, rate=theta,log=TRUE)
log.prior= dgamma(theta, shape=alpha, rate=beta,log=TRUE)
return(log.prior+sum(log.likelihood))
} Se——— " —
@ Explain what this function log.post is calculating. In your answer,
include a formula involving the prior and likelihood that the funjtion

is implementing. (é MKWV\S /\[91 - [1)\9@[9)«" (Qﬂp@l@

L)



Board example: Exponential data/Gamma prior

M = 5000
THETA=NULL
etal=1

for (m in 1:M){

psi=rnorm(1,theta0,0.2)

log.r <- log.post(psi)-log.post(thetal)
if (log(runif(1))<min(0,log.r))

{

thetal0 <- psi

}

THETA=c (THETA, thetaO)
}

@ Explain what the command psi=rnorm(1,theta0,Q.2) is doing in
the context of the algorithm. ~ Nwd"l 0-9%
Explain what the command if (log(runif(1))<min(0,log.r))
is doing in the context of the algorithm. In your answer, include a
formula involving p(6 | y) that the code is implementing.
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Board example: Exponential data/Gamma prior -

@ Although the chain starts nowhere near the posterior mean of 0.11,
it arrives there after a few iterations.

@ The chain moves up and down many times though the parameter
space.
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Figure: Plot of the 5000 MCMC observations against iterations. Red line is the

Nnncterinr mean



-d example: Exponential data/Gamma prior

Histogram of THETA
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Figure: Histogram of the sample vs the true posterior density in blue

E. Solea, QMUL




Board example: Exponential data/Gamma prior

Then arrives after few iterations at the region where the posterior density
is high.

o T 77

~7

Figure: Blue: true posterior density. Green: true posterior mean. Red: MCMC
observations



Choosing an MCMC starting value

@ The algorithm eventually produces dependent points 0y, 6;,...
distributed with pdf p(6 | y).
- >

@ But we have to start from some 61, we can’t choose it from p(0 |y).
S

@ QUESTION: How do we choose the starting value 6,7



Exponential data/Gamma: Choosing an MCMC starting
value

Plot shows that there are observations at low-probability region and are
not [igrepresentative of the posterior density.

Hon S
ochell'M’“@
o temw

THETA

true posterior density

Figure: Left: Plot of the 5000 MCMC observations against iterations with
ed line is the posterior mean. Right plot: true density with MCMC

observations in red



-1oosing an MCMC starting value

@ The ideal is to start the chain at a region of the parameter space
that has high posterior probability.

@ However, with a complicated problem you might not know where a

high probib‘ility reEion_il's(.,‘5 310N

7~ (



Discarding early iterations: “burn-in"

@ To diminish the influence of the starting values, we can generally
discard the first 100 or the first 1000 iterations of the sample that
are in a_low probability regg_n, and focus attention on the remaining
observations. -

[ — ——

@ The practice of discarding early iterations of an MCMC run is known
as “burn-in".



Discarding early iterations: “burn-in"

@ A standard practice in MCMC approximation is as follows:

@ Start the chain at some point chosen for convenience.

@ Run algorithm until some iteration B.

@ Run the algorithm N more times generating, {0®) ... 6™}

@ Discar {& 6®} %ind use the empirical distribdtion o
{eB . B+N} to approximate p(0 | y).

v —
@ The iterations up to and mcludlng B are called the “burn-in’ perlod

in which the chain moves from its initial value to a region of the
parameter space that has high posterior probability.

—
@ When we say the chain has burned-in, we mean that it has entered a

high-probability region. T
—\___/_\_P




Exponential data/Gamma: Burn in

A chain that has burned in
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Figure: Left: Plot of the 5000 MCMC observations against iterations with
0, = 2 after throwing out the first half iterations. Red line is the posterior
mean. Right plot: true density with MCMC observations in red



Discarding early iterations

@ In theory, longer burnin periods will cause the chain to “forget" its
starting value so that the influence of this value will be lessened.

@ If we have a good idea of where the high posterior probability region
is, we can reduce the burn-in period by starting the chain there.

@ In general, any value at where the posterior density is high will
suffice, (e.g the MLE of the data or the posterior mode), and
burn-in may not be necessary. The chain is burned in immediately.

P — —
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Metropolis algorithm proposal distribution

@ In the symmetric Metropolis-Hastings algorithm, the proposal
distribution g is most often taken as a normal distribution centred

on the current point
IVNN( i— lvbz)

— —
@ The efficiency of the Metropolis-Hastings sample depends on the
choice of the standard deviation b.

@ QUESTION: But, what value of b should we choose?



Metropolis algorithm proposal distribution

@ Recall, the algorithm produces dependent points 01,6,,...
distributed with pdf p(6 | y).

@ An ideal choice of b would lead to a small correlation of subsequent

realisations 6._, and 0..
0 S——



Dependence of the iterations in each sequence

@ The 6,_, and 6; simulated values from an MCMC algorithm are
correlated:

o There exists correlation between the 6,_, and 6;, since w ~ ¢(- | 6,_,)

—wifyi _ -
and& v if v is accepted

d

o There exists correlation between 6, and 6., if v is rejected and
9i — 91'—1 .
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Metropolis algorithm proposal distribution

@ The choice of b will affect the acceptance probability,

r — min (1, g‘?é:’i)l)) |

and hence the correlation in the Markov chain.




Metropolis algorithm proposal distribution

o For example, if b is very small, then v is close to 6;,_1. So g(y) is

close to g(6;—1). - —

@ Hence there is a high probability of accepting the proposal.

@ But the chain will move very slowly around the space, and the
Markov chain will be highly correlated.
\

L ——
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Example: Sample paths with small b

o Figure: 0 against iteration number i.

@ Not good, proposal standard deviatio@ is too sg\al—l’. The
acceptance probability is high but the chain is hardly moving.

0 200 400 600 800 1000



Metropolis algorithm proposal distribution

@ On the other hand, if b is large, then ¥ may be far from 6;_;.

Vm—

@ And g(y) may be much lower than g(6;_1).

= ———

@ Now there is a lower probability of accepting the proposal v.

@ The chain makes large jumps (so moves fast) and remains at the
same place quite often, and hence Markov chain will be highly
correlated
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Example: Sample paths with too large b

@ Choosing too large b

@ The chain moves fast but too many proposals are rejected (small
acceptance probability), and hence remains for a long time at each
accepted value.

S \O) EEN
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Metropolis algorithm acceptance probability

b affects the acceptance probability.

M
0.8+
0.6
@ Probability that each
proposal is accepted 0.4

tends to decrease as the

proposal scale b is 02
increased. | \__\‘>

Acceptance probability

0.0 . . . .
0.0 0.5 1.0 1.5 2.0 2.5

Proposal scale (\D\,

E. Solea, QMUL



Proposal scale and acceptance probability

b affects the correlation in the Markov chain

—

AN
R
(9é
@ Some intermediate value
for b tends to be best
for reducing the

correlation.

Correlation

@ lts value depends on the
model and the data.

E. Solea, QMUL
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Choosing b

@ Goal: We want to choose b such that the chain moves fast and
yields a high probability of acceptance, to reduce the correlation
between 6; and 6,,, values.

@ Theoretically, it has been shown that the optimal acceptance rate is
around {).234-fan asymptotic result).

EAo%s

@ Thus, the standard deviation b should be tuned to get an

.—:‘—
acceptance rate of around this level.
T J

o But exierience suggests that an acceptance rate of around




Choosing b

Recommendations

@ It is common practice to implement several short runs of the

Metropolis-Hastings algorithm under@fferent values of b.)
\ \_—.
@ Choose b that gives an acceptance rate r roughly betweel 20—30°

M

@ Once a reasonable value b is selected a longer more efficient Markov
chain can be run.



Exponential data/Gamma: Choosing b

@ We examine the choices » =0.001, »=0.02, b =0.2 and b =5 for
the Exponential data/Gamma prior example.
@ Table 1 shows the acceptance probability for the different choices of

the proposal standard deviation b

Probability of acceptance
b=0.001 | 0.98
b=0.02 | 0.84

(EOQ 025

——————

b=>5 .088




Exponential data/Gamma: b = 0.001

@ Choosing b too small, b =0.001, the acceptance probability is very
: Ne—t——
high.
@ However, the chain is in a low posterior probability region, and
moves very slowly toward a higher probability region.
O - [3{0«4!%
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Exponential data/Gamma: b =0.02

@ Choosing b = 0.02 yields again a high probability of acceptance of

but the chain changes only very slowly.
S —————7
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Exponential data/Gamma: b =5

@ Choosing b =5 too large allows the chain to make large jumps,
—— D

however the acceptance probabilitvis small

@ So the chain remains for a long time at each accepted value.
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Figure: Sample paths when b =5



Exponential data/Gamma: b =0.2

@ Choosing b = 0.2 yields an acceptance probability of 0.24. This is
the optimal choice.

@ Sequence should move up and down through the parameter space
many times.

o By selecting b carefully, we can decrease the correlation in the chain,
leading to an improvement in the approximation to the posterior

distribution.
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Checking that sampling worked

@ Finally, we need to check if the method has sampled the posterior
distribution well enough.

@Check that summaries such as posterior median, 95% credible
intervals are similar for each sequence.



