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Today’s agenda

Today’s lecture

Review of the symmetric Metropolis-Hastings (MH)

Understand implementation issues with MH.
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Symmetric MH algorithm

Goal: Generate a Markov chain q1,q2, . . . from the posterior p(q | y).

Define g(q) = p(q) p(y | q), the non-normalized posterior density/Bayes
numerator.

Start with q1, randomly such that g(q1)> 0. For each i > 1:
1 Generate y ⇠ N(qi�1,b2), for some b > 0.

2 Compute the probability of acceptance

r = min
✓

1,
g(y)

g(qi�1)

◆
= min

✓
1,

p(y)p(y | y)

p(qi�1)p(y | qi�1)

◆
.

3 Generate U ⇠U [0,1]. Set

qi =

(
y, if U < r
qi�1, otherwise
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Working on the log scale

Let y = (y1, . . . ,yn) be the observed data. The likelihood p(yq) is
typically a product of p(yi | q)

p(y | q) =
nY

i=1

p(yi | q).

For numerical stability, we usually do the computations using the log
of the posterior density to work with sums instead of products.

Define

L (q) = log(p(q) p(y | q)) = log(p(q))+ log(p(y | q)) ,

the log of the posterior density (up to a constant).
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Working on the log scale

So, the log of the likelihood is

log(p(y | q)) =
nX

i=1

log(p(yi | q)) .

The acceptance probability is

d = min(0,L (y)�L (qi�1)) .
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Symmetric MH on the log scale

Define L (q) = log(p(q) p(y | q)) = log(p(q))+ log(p(y | q)),
the log of the posterior density (up to a constant).

Start with q1 randomly. For each i > 1:
1 Generate y ⇠ N(qi�1,b2), for some b > 0.
2 Compute the probability of acceptance

d = min(0,L (y)�L (qi�1)) .

3 Generate U ⇠U [0,1]. Set

qi =

(
y, if logU < d
qi�1, otherwise
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Board example: Exponential data/Gamma prior

See also exercise sheet 9

The time until failure for a type of light bulb is exponentially
distributed with parameter q > 0, where q is unknown.
We observe n bulbs, with failure times t1, . . . , tn.
We assume a Gamma(a,b ) prior distribution for q , where a > 0
and b > 0 are known.

1 What is the posterior pdf for q given the data t = (t1, . . . , tn)?
2 Write down the steps of the Metropolis-Hastings algorithm to

simulate realisations from the posterior distribution by using a

normal proposal distribution with standard deviation b.
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Board example: Exponential data/Gamma prior

Let t = (t1, . . . , tn) be independent and identically distributed data from
exponential(q). We assume a Gamma(a,b ) prior distribution for q . In
the following R code, the data t is denoted by t, q by theta, a by alpha

and b by beta. We want to simulate from the posterior of q , p(q | t).

log.post = function(theta)

{

log.likelihood = dexp(t, rate=theta,log=TRUE)

log.prior= dgamma(theta, shape=alpha, rate=beta,log=TRUE)

return(log.prior+sum(log.likelihood))

}

Explain what this function log.post is calculating. In your answer,
include a formula involving the prior and likelihood that the function
is implementing.
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Board example: Exponential data/Gamma prior

M = 5000

THETA=NULL

theta0=1

for (m in 1:M){

psi=rnorm(1,theta0,0.2)

log.r <- log.post(psi)-log.post(theta0)

if (log(runif(1))<min(0,log.r))

{

theta0 <- psi

}

THETA=c(THETA,theta0)

}

Explain what the command psi=rnorm(1,theta0,0.2) is doing in
the context of the algorithm.
Explain what the command if (log(runif(1))<min(0,log.r))

is doing in the context of the algorithm. In your answer, include a
formula involving p(q | y) that the code is implementing.
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Board example: Exponential data/Gamma prior

Although the chain starts nowhere near the posterior mean of 0.11,
it arrives there after a few iterations.
The chain moves up and down many times though the parameter
space.
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Figure: Plot of the 5000 MCMC observations against iterations. Red line is the

posterior mean
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Board example: Exponential data/Gamma prior
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Figure: Histogram of the sample vs the true posterior density in blue
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Board example: Exponential data/Gamma prior

Then arrives after few iterations at the region where the posterior density
is high.
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Figure: Blue: true posterior density. Green: true posterior mean. Red: MCMC

observations

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Choosing an MCMC starting value

The algorithm eventually produces dependent points q1,q2, . . .
distributed with pdf p(q | y).

But we have to start from some q1, we can’t choose it from p(q | y).

QUESTION: How do we choose the starting value q1?
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Exponential data/Gamma: Choosing an MCMC starting

value

Plot shows that there are observations at low-probability region and are
not unrepresentative of the posterior density.
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Figure: Left: Plot of the 5000 MCMC observations against iterations with

q1 = 2. Red line is the posterior mean. Right plot: true density with MCMC

observations in red

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Choosing an MCMC starting value

The ideal is to start the chain at a region of the parameter space
that has high posterior probability.

However, with a complicated problem you might not know where a
high probability region is.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Discarding early iterations: “burn-in”

To diminish the influence of the starting values, we can generally
discard the first 100 or the first 1000 iterations of the sample that
are in a low probability region, and focus attention on the remaining
observations.

The practice of discarding early iterations of an MCMC run is known
as “burn-in".
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Discarding early iterations: “burn-in”

A standard practice in MCMC approximation is as follows:
1 Start the chain at some point chosen for convenience.

2 Run algorithm until some iteration B.

3 Run the algorithm N more times generating, {q (B+1), . . . ,q (B+N)}
4 Discard {q (1), . . . ,q (B)} and use the empirical distribution of

{q (B+1), . . . ,q (B+N)} to approximate p(q | y).

The iterations up to and including B are called the “burn-in" period,
in which the chain moves from its initial value to a region of the
parameter space that has high posterior probability.
When we say the chain has burned-in, we mean that it has entered a
high-probability region.
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Exponential data/Gamma: Burn in

A chain that has burned in
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Figure: Left: Plot of the 5000 MCMC observations against iterations with

q1 = 2 after throwing out the first half iterations. Red line is the posterior

mean. Right plot: true density with MCMC observations in red
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Discarding early iterations

In theory, longer burnin periods will cause the chain to “forget" its
starting value so that the influence of this value will be lessened.

If we have a good idea of where the high posterior probability region
is, we can reduce the burn-in period by starting the chain there.

In general, any value at where the posterior density is high will
su�ce, (e.g the MLE of the data or the posterior mode), and
burn-in may not be necessary. The chain is burned in immediately.
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Metropolis algorithm proposal distribution

In the symmetric Metropolis-Hastings algorithm, the proposal
distribution q is most often taken as a normal distribution centred
on the current point

y ⇠ N(qi�1,b2).

The e�ciency of the Metropolis-Hastings sample depends on the
choice of the standard deviation b.

QUESTION: But, what value of b should we choose?
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Metropolis algorithm proposal distribution

Recall, the algorithm produces dependent points q1,q2, . . .
distributed with pdf p(q | y).

An ideal choice of b would lead to a small correlation of subsequent
realisations qi�1 and qi.
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Dependence of the iterations in each sequence

The qi�1 and qi simulated values from an MCMC algorithm are
correlated:

There exists correlation between the qi�1 and qi, since y ⇠ q(· | qi�1)
and qi = y if y is accepted.

There exists correlation between qi and qi�1 if y is rejected and

qi = qi�1 .
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Metropolis algorithm proposal distribution

The choice of b will a�ect the acceptance probability,

r = min
✓

1,
g(y)

g(qi�1)

◆
,

and hence the correlation in the Markov chain.
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Metropolis algorithm proposal distribution

For example, if b is very small, then y is close to qi�1. So g(y) is
close to g(qi�1).

Hence there is a high probability of accepting the proposal.

But the chain will move very slowly around the space, and the
Markov chain will be highly correlated.
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Example: Sample paths with small b

Figure: q against iteration number i.
Not good, proposal standard deviation b is too small. The
acceptance probability is high but the chain is hardly moving.
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Metropolis algorithm proposal distribution

On the other hand, if b is large, then y may be far from qi�1.

And g(y) may be much lower than g(qi�1).

Now there is a lower probability of accepting the proposal y.

The chain makes large jumps (so moves fast) and remains at the
same place quite often, and hence Markov chain will be highly
correlated
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Example: Sample paths with too large b

Choosing too large b

The chain moves fast but too many proposals are rejected (small
acceptance probability), and hence remains for a long time at each
accepted value.
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Metropolis algorithm acceptance probability

b a�ects the acceptance probability.

Probability that each
proposal is accepted
tends to decrease as the
proposal scale b is
increased.
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Proposal scale and acceptance probability

b a�ects the correlation in the Markov chain

Some intermediate value
for b tends to be best
for reducing the
correlation.
Its value depends on the
model and the data.

0.0

0.2

0.4

0.6

C
or

re
la

tio
n

0.0 0.5 1.0 1.5 2.0 2.5

Proposal scale

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Choosing b

Goal: We want to choose b such that the chain moves fast and
yields a high probability of acceptance, to reduce the correlation
between qi and qi+1 values.

Theoretically, it has been shown that the optimal acceptance rate is
around 0.234-(an asymptotic result).

But experience suggests that an acceptance rate of around
20%-30%.

Thus, the standard deviation b should be tuned to get an
acceptance rate of around this level.
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Choosing b

Recommendations

It is common practice to implement several short runs of the
Metropolis-Hastings algorithm under di�erent values of b.

Choose b that gives an acceptance rate r roughly between 20%-30%.

Once a reasonable value b is selected a longer more e�cient Markov
chain can be run.
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Exponential data/Gamma: Choosing b

We examine the choices b = 0.001, b = 0.02, b = 0.2 and b = 5 for
the Exponential data/Gamma prior example.
Table 1 shows the acceptance probability for the di�erent choices of
the proposal standard deviation b

Probability of acceptance
b = 0.001 0.98
b = 0.02 0.84
b = 0.2 0.25
b = 5 0.088
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Exponential data/Gamma: b = 0.001

Choosing b too small, b = 0.001, the acceptance probability is very
high.
However, the chain is in a low posterior probability region, and
moves very slowly toward a higher probability region.
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Figure: Sample paths when b = 0.001
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Exponential data/Gamma: b = 0.02

Choosing b = 0.02 yields again a high probability of acceptance of
0.84, but the chain changes only very slowly.

0 1000 2000 3000 4000 5000

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

iterations

th
et
a

Figure: Sample paths when b = 0.02
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Exponential data/Gamma: b = 5

Choosing b = 5 too large allows the chain to make large jumps,
however the acceptance probability is small
So the chain remains for a long time at each accepted value.
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Figure: Sample paths when b = 5

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Exponential data/Gamma: b = 0.2

Choosing b = 0.2 yields an acceptance probability of 0.24. This is
the optimal choice.
Sequence should move up and down through the parameter space
many times.
By selecting b carefully, we can decrease the correlation in the chain,
leading to an improvement in the approximation to the posterior
distribution.
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Figure: Sample paths when b = 0.2
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Checking that sampling worked

Finally, we need to check if the method has sampled the posterior
distribution well enough.

Check that summaries such as posterior median, 95% credible
intervals are similar for each sequence.
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