WEEK 11 NOTES

1. FURTHER PROPERTIES OF THE HEAT KERNEL AND ITS APPLICATION TO SOLVE THE HEAT EQUATIONS

Recall last week that we obtained a special solution to the heat equation called the heat kernel

$$
K(x, t)=\frac{e^{-\frac{x^{2}}{4 \varkappa t}}}{\sqrt{4 \varkappa \pi t}} .
$$

1.1. Dirac's delta function. In order to better understand the properties of the heat Kernel at $t=0$ consider the sequence of functions

$$
\left\{f_{\lambda}(x)\right\}=\left\{\frac{e^{-\frac{x^{2}}{\lambda^{2}}}}{\lambda \sqrt{\pi}}\right\}, \quad \lambda \in \mathbb{R}^{+}
$$

Graphs of the functions f_{λ} for various values of λ can be seen in the figure below:

Observe that as $\lambda \rightarrow 0$, the Gaussian bells become increasingly peaked. One can then check that:
(i) if $x \neq 0$ then $f_{\lambda}(x) \rightarrow 0$ as $\lambda \rightarrow 0$;
(ii) if $x=0$ then $f_{\lambda}(0) \rightarrow \infty$ as $\lambda \rightarrow 0$;
(iii) moreover, one has that

$$
\int_{-\infty}^{\infty} f_{\lambda}(x) d x=1
$$

for all λ so that, in particular, one has

$$
\lim _{\lambda \rightarrow 0} \int_{-\infty}^{\infty} f_{\lambda}(x) d x=1
$$

The limit of the family $\left\{f_{\lambda}\right\}$ is not a proper function. However, one can formally write

$$
\delta(x) \equiv \lim _{\lambda \rightarrow 0} f_{\lambda}(x)=\lim _{\lambda \rightarrow 0} \frac{e^{-x^{2} / \lambda^{2}}}{\sqrt{\pi}}
$$

This is the so-called Dirac's delta "function".
Note. There is a branch of mathematics known as distribution theory aimed at making sense of objects like Dirac's delta.

Definition 1.1. Dirac's delta, δ, is defined by the conditions:
(i) $\delta(x)=0$ for $x \neq 0$;
(ii) $\delta(0)=\infty$;
(iii) for any $a<0<b$ one has

$$
\int_{a}^{b} \delta(x)=1
$$

Note. From the previous discussion it follows that

$$
K(x, 0)=\delta(x)
$$

In terms of diffusion processes, $\delta(x)$ describes an infinitesimally small "drop" of ink concentrated at the origin. This "drop" then spreads with time.
1.2. The general solution to the heat equation on the real line. The heat kernel is the basic building block to obtain the general solution to the heat equation on the real line.

We begin by observing the following property:
Lemma 1.2. If $U(x, t)$ is a solution to

$$
U_{t}=\varkappa U_{x x}
$$

then

$$
\begin{equation*}
V(x, t) \equiv \int_{-\infty}^{\infty} U(x-y, t) g(y) d y \tag{1.1}
\end{equation*}
$$

is also a solution for any function g-as long as the integral converges.
Proof. This follows by direct computation:

$$
\begin{aligned}
& V_{t}(x, t)=\frac{\partial}{\partial t} \int_{-\infty}^{\infty} U(x-y, t) g(y) d y=\int_{-\infty}^{\infty} U_{t}(x-y, t) g(y) d y \\
& V_{x x}(x, t)=\frac{\partial^{2}}{\partial x^{2}} \int_{-\infty}^{\infty} U(x-y, t) g(y) d y=\int_{-\infty}^{\infty} U_{x x}(x-y, t) g(y) d y
\end{aligned}
$$

Hence,

$$
V_{t}(x, t)-\varkappa V_{x x}(x, t)=\int_{-\infty}^{\infty}\left(U_{t}(x-y, t)-\varkappa U_{x x}(x-y, t)\right) g(y) d y=0
$$

Note. The operation given by (1.1) is called the convolution of U and g. This is sometimes denoted as

$$
V(x, t)=(U * g)(x, t)
$$

Now, consider the problem

$$
\begin{align*}
& U_{t}=\varkappa U_{x x}, \quad x \in \mathbb{R}, \quad t>0 \tag{1.2}\\
& U(x, 0)=f(x) \tag{1.3}
\end{align*}
$$

Claim: the (unique) solution to (1.2)-(1.3) is given by

$$
U(x, t)=\int_{-\infty}^{\infty} K(x-y, t) f(y) d y
$$

with K denoting the heat kernel. Or, more explicitly,

$$
\begin{equation*}
U(x, t)=\int_{-\infty}^{\infty} \frac{e^{-\frac{(x-y)^{2}}{4 \varkappa t}}}{\sqrt{4 \varkappa \pi t}} f(y) d y \tag{1.4}
\end{equation*}
$$

The latter is known as the Fourier-Poisson formula.
As a consequence of Lemma 1.2, and given that $K(x, t)$ satisfies the heat equation, then $U(x, t)$ as defined by (1.4) is a solution to the heat equation.
Note. To fully address the claim it is only necessary to verify that $U(x, 0)=f(x)$.
1.2.1. Some auxiliary calculations. In the following it will be convenient to consider the function

$$
\begin{equation*}
Q(x, t) \equiv \frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{x / \sqrt{4 \varkappa t}} e^{-s^{2}} d s, \quad t>0 \tag{1.5}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
Q_{x}(x, t) & =\frac{1}{\sqrt{\pi}} \frac{d}{d x}\left(\frac{x}{\sqrt{4 \varkappa t}}\right) e^{-\frac{x^{2}}{4 \varkappa t}} \\
& =\frac{e^{-\frac{x^{2}}{4 \varkappa t}}}{\sqrt{4 \pi \varkappa t}}=K(x, t)
\end{aligned}
$$

Thus, $Q(x, t)$ is the antiderivative (with respect to $x)$ of $K(x, t)$.
Next, we consider the limit of $Q(x, t)$ as $t \rightarrow 0^{+}$. There are 2 cases:
(i) $x>0$. Here we have

$$
\lim _{t \rightarrow 0^{+}} Q(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-s^{2}} d s=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2}=1
$$

(ii) $x<0$. Here one has

$$
\lim _{t \rightarrow 0^{+}} Q(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-s^{2}} d s=\frac{1}{2}-\frac{1}{\sqrt{\pi}} \int_{-\infty}^{0} e^{-s^{2}} d s=\frac{1}{2}-\frac{1}{2}=0
$$

Hence, one concludes that

$$
\lim _{t \rightarrow 0^{+}} Q(x, t)=\left\{\begin{array}{ll}
0 & x<0 \\
1 & x>0
\end{array} \equiv H(x)\right.
$$

The function H defined above is called Heaviside's step function.
Note. As Q is the antiderivative of K it follows from the above discussion that

$$
H^{\prime}(x)=\delta(x)
$$

That is, Dirac's delta is the derivative of Heaviside's step function.
1.2.2. Concluding the main computation. Using the properties of Q as discussed in the previous subsection one has that

$$
\begin{aligned}
U(x, t) & =\int_{-\infty}^{\infty} K(x-y, t) f(y) d y \\
& =\int_{-\infty}^{\infty} Q_{x}(x-y, t) f(y) d y \\
& =-\int_{-\infty}^{\infty} Q_{y}(x-y, t) f(y) d y \\
& =-\left.Q(x-y, t) f(y)\right|_{-\infty} ^{\infty}+\int_{-\infty}^{\infty} Q(x-y, t) f^{\prime}(y) d y
\end{aligned}
$$

where in the third line one makes use of the chain rule to change the x-derivative to a y-derivative and in the fourth line one employs integration by parts to pass the derivative from Q to f. Now, as $K(x-y, t)$ decays very fast to 0 as $|x-y| \rightarrow \infty$ it follows that

$$
-\left.Q(x-y, t) f(y)\right|_{-\infty} ^{\infty}=0
$$

Hence,

$$
U(x, t)=\int_{-\infty}^{\infty} Q(x-y, t) f^{\prime}(y) d y
$$

We make use of this expression to compute the limit $t \rightarrow 0^{+}$:

$$
\begin{aligned}
U\left(x, 0^{+}\right) & =\int_{-\infty}^{\infty} Q\left(x-y, 0^{+}\right) f^{\prime}(y) d y=\int_{-\infty}^{\infty} H(x-y) f^{\prime}(y) d y \\
& =\int_{-\infty}^{x} f^{\prime}(y) d y=\left.f(y)\right|_{-\infty} ^{x}=f(x)
\end{aligned}
$$

where in the last line it has been assumed that $f(x) \rightarrow 0$ as $x \rightarrow-\infty$.
We summarise the previous discussion in the following:
Proposition 1.3. For $t>0$, the Fourier-Poisson formula

$$
U(x, t)=\int_{-\infty}^{\infty} \frac{e^{-\frac{(x-y)^{2}}{4 \varkappa t}}}{\sqrt{4 \varkappa \pi t}} f(y) d y
$$

gives the (unique) solution to

$$
\begin{aligned}
& U_{t}(x, t)=\varkappa U_{x x}(x, t), \quad x \in \mathbb{R}, \quad t>0 \\
& U(x, 0)=f(x)
\end{aligned}
$$

1.3. Some examples. In this section we discuss some examples of computation involving the Fourier-Poisson formula.

Example 1.4. Analyse the behaviour of the solution $U(x, t)$ given by the Fourier-Poisson formula in the case

$$
f(x)=H(x)= \begin{cases}0 & x<0 \\ 1 & x>0\end{cases}
$$

In this case one has

$$
\begin{aligned}
U(x, t) & =\frac{1}{\sqrt{4 \pi \varkappa t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 \varkappa t} H(y) d y \\
& =\frac{1}{\sqrt{4 \pi \varkappa t}} \int_{0}^{\infty} e^{-(x-y)^{2} / 4 \varkappa t} d y
\end{aligned}
$$

as $H(x) \neq 0$ only for $x>0$. Letting now

$$
s=\frac{x-y}{\sqrt{4 \varkappa t}} \Longrightarrow d y=-\sqrt{4 \varkappa t} d s
$$

one finds that

$$
\begin{aligned}
U(x, t) & =-\frac{\sqrt{4 \varkappa t}}{\sqrt{4 \pi \varkappa t}} \int_{x / \sqrt{4 \varkappa t}}^{-\infty} e^{-s^{2}} d s \\
& =\frac{1}{\sqrt{\pi}} \int_{-\infty}^{x / \sqrt{4 \varkappa t}} e^{-s^{2}} d s \\
& =\frac{1}{\sqrt{\pi}} \int_{-\infty}^{0} e^{-s^{2}} d s+\frac{1}{\sqrt{\pi}} \int_{0}^{x / \sqrt{4 \varkappa t}} e^{-s^{2}} d s \\
& =\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{x / \sqrt{4 \varkappa t}} e^{-s^{2}} d s
\end{aligned}
$$

Thus, observe that, in fact

$$
U(x, t)=Q(x, t)
$$

We now investigate the behaviour of $U(x, t)$ for fixed x as $t \rightarrow \infty$:

$$
\lim _{t \rightarrow \infty} U(x, t)=\frac{1}{2}+\lim _{t \rightarrow \infty} \frac{1}{\sqrt{\pi}} \int_{0}^{x / \sqrt{4 \varkappa t}} e^{-s^{2}} d s=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{0} e^{-s^{2}} d s=\frac{1}{2}
$$

as $x / \sqrt{4 \varkappa t} \rightarrow 0$ as $t \rightarrow \infty$.

Example 1.5. Evaluate the Fourier-Poisson formula in the case

$$
f(x)=e^{-x}
$$

Substituting the above expression in the formula one obtains

$$
U(x, t)=\frac{1}{\sqrt{4 \varkappa \pi t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 \varkappa t} e^{-y} d y
$$

The exponent in the integral can be rearranged as

$$
\begin{aligned}
-\frac{(x-y)^{2}}{4 \varkappa t}-y & =-\frac{x^{2}-2 x y+y^{2}+4 \varkappa t y}{4 \varkappa t} \\
& =-\frac{(y+2 \varkappa t-x)^{2}}{4 \varkappa t}+\varkappa t-x
\end{aligned}
$$

Hence,

$$
\begin{aligned}
U(x, t) & =\frac{1}{\sqrt{4 \varkappa \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(y+2 \varkappa t-x)^{2}}{4 \varkappa t}+\varkappa t-x} d y \\
& =\frac{e^{\varkappa t-x}}{\sqrt{4 \varkappa \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(y+2 \varkappa t-x)^{2}}{4 \varkappa t}} d y
\end{aligned}
$$

Letting

$$
s=\frac{y+2 \varkappa t-x}{\sqrt{4 \varkappa t}} \Longrightarrow d s=\frac{d y}{\sqrt{4 \varkappa t}}
$$

it follows then that

$$
\begin{aligned}
U(x, t) & =\frac{e^{\varkappa t-x}}{\sqrt{4 \varkappa \pi t}} \int_{-\infty}^{\infty} e^{-s^{2}} \sqrt{4 \varkappa t} d s \\
& =\frac{e^{\varkappa t-x}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-s^{2}} d s=e^{\varkappa t-x}
\end{aligned}
$$

Observe, in particular, that

$$
U(x, t) \rightarrow \infty, \quad \text { as } \quad t \rightarrow \infty
$$

Thus, the solution does not decay but grows at every point x. Plots of this solution for various values of t are shown below.

We conclude the list of examples with one particular solution to the heat equation which evidences an important property of the heat equation:

Example 1.6. Compute the solution to the heat equation on the real line if the initial condition is given by

$$
f(x)=\frac{e^{x^{2} / 4 \varkappa}}{\sqrt{4 \pi \varkappa}}
$$

In this case substitution of the initial condition into the Fourier-Poisson formula gives

$$
\begin{aligned}
U(x, t) & =\frac{1}{\sqrt{4 \pi \varkappa t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 \varkappa t}} \frac{e^{\frac{y^{2}}{4 \varkappa}}}{\sqrt{4 \pi \varkappa}} d y \\
& =\frac{1}{4 \pi \varkappa \sqrt{t}} \int_{-\infty}^{\infty} e^{\frac{y^{2}}{4 \varkappa}-\frac{(x-y)^{2}}{4 \varkappa t}} d y
\end{aligned}
$$

The exponent in the integral can be manipulated by completing squares to get

$$
\begin{aligned}
\frac{y^{2}}{4 \varkappa}-\frac{(x-y)^{2}}{4 \varkappa t} & =\frac{1}{4 \varkappa}\left(y^{2}-\frac{x^{2}}{t}-\frac{y^{2}}{t}+\frac{2 x y}{t}\right) \\
& =\frac{1}{4 \varkappa}\left(\left(1-\frac{1}{t}\right) y^{2}+\frac{2 x y}{t}-\frac{x^{2}}{t}\right) \\
& =\frac{1}{4 \varkappa}\left(\left(\frac{t-1}{t}\right)\left(y^{2}+\frac{2 x y}{t-1}+\frac{x^{2}}{(t-1)^{2}}\right)-\frac{x^{2}}{t}-\frac{x^{2}}{t(t-1)}\right) \\
& =\frac{1}{4 \varkappa}\left(\left(\frac{t-1}{t}\right)\left(y+\frac{x}{t-1}\right)^{2}-\frac{x^{2}}{t-1}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
U(x, t) & =\frac{1}{4 \pi \varkappa \sqrt{t}} \int_{-\infty}^{\infty} e^{\frac{1}{4 \varkappa}\left(\left(\frac{t-1}{t}\right)\left(y+\frac{x}{t-1}\right)^{2}-\frac{x^{2}}{t-1}\right)} d y \\
& =\frac{e^{-\frac{x^{2}}{4 \varkappa(t-1)}}}{4 \pi \varkappa \sqrt{t}} \int_{-\infty}^{\infty} e^{-\frac{1}{4 \varkappa(}\left(\frac{1-t}{t}\right)\left(y+\frac{x}{t-1}\right)^{2}} d y
\end{aligned}
$$

Finally, letting

$$
s=\sqrt{\frac{1-t}{4 \varkappa t}}\left(y+\frac{x}{t-1}\right) \Longrightarrow d s=\sqrt{\frac{1-t}{4 \varkappa t}} d y
$$

one concludes that

$$
\begin{aligned}
U(x, t) & =\frac{e^{-\frac{x^{2}}{4 \varkappa(t-1)}}}{4 \pi \varkappa \sqrt{t}} \sqrt{\frac{4 \varkappa t}{1-t}} \int_{-\infty}^{\infty} e^{-s^{2}} d s \\
& =\frac{e^{\frac{x^{2}}{4 \varkappa(1-t)}}}{\pi \sqrt{4 \varkappa(1-t)}} \sqrt{\pi} \\
& =\frac{e^{\frac{x^{2}}{4 \varkappa(1-t)}}}{\sqrt{4 \varkappa \pi(1-t)}}
\end{aligned}
$$

Observe that

$$
U(x, t) \longrightarrow \infty \quad \text { as } \quad t \rightarrow 1
$$

That is, the solution becomes singular in a finite amount of time! A plot of the solutions for various values of t is shown below:

Example 1.7. In this example we suppose the initial date f is a bump function so that $f=0$ for $|x| \geq R_{0}$ and $|f(x)| \leq C_{0}$. See for example the of a bump function graphed below.

Then by the Fourier-Poisson formula, we get

$$
\begin{aligned}
U(x, t) & =\frac{1}{\sqrt{4 \pi \varkappa t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 \varkappa t}} f(y) d y \\
& =\frac{1}{\sqrt{4 \pi \varkappa t}} \int_{-R_{0}}^{R_{0}} e^{-\frac{(x-y)^{2}}{4 \varkappa t}} f(y) d y \\
& \leq \frac{1}{\sqrt{4 \pi \varkappa t}} \cdot 2 R_{0} \cdot C_{0} \\
& \rightarrow 0, \text { as } t \rightarrow \infty
\end{aligned}
$$

Here in the second line we used that $f=0$ for $x \geq R_{0}$ or $x \leq-R_{0}$.
We see that after a very long time, the solution to the heat equation tend to zero!

