WEEK 11 NOTES

1. Further properties of the heat kernel and its application to solve the heat equations

Recall last week that we obtained a special solution to the heat equation called the heat kernel

$$K(x,t) = \frac{e^{-\frac{x^2}{4\varkappa t}}}{\sqrt{4\varkappa\pi t}}.$$

1.1. **Dirac's delta function.** In order to better understand the properties of the heat Kernel at t=0 consider the sequence of functions

$$\{f_{\lambda}(x)\} = \left\{\frac{e^{-\frac{x^2}{\lambda^2}}}{\lambda\sqrt{\pi}}\right\}, \qquad \lambda \in \mathbb{R}^+.$$

Graphs of the functions f_{λ} for various values of λ can be seen in the figure below:

Observe that as $\lambda \to 0$, the Gaussian bells become increasingly peaked. One can then check that:

- (i) if $x \neq 0$ then $f_{\lambda}(x) \to 0$ as $\lambda \to 0$;
- (ii) if x = 0 then $f_{\lambda}(0) \to \infty$ as $\lambda \to 0$;
- (iii) moreover, one has that

$$\int_{-\infty}^{\infty} f_{\lambda}(x) dx = 1$$

for all λ so that, in particular, one has

$$\lim_{\lambda \to 0} \int_{-\infty}^{\infty} f_{\lambda}(x) dx = 1.$$

The limit of the family $\{f_{\lambda}\}$ is not a proper function. However, one can formally write

$$\delta(x) \equiv \lim_{\lambda \to 0} f_{\lambda}(x) = \lim_{\lambda \to 0} \frac{e^{-x^2/\lambda^2}}{\sqrt{\pi}}.$$

This is the so-called Dirac's delta "function".

Note. There is a branch of mathematics known as distribution theory aimed at making sense of objects like Dirac's delta.

Definition 1.1. Dirac's delta, δ , is defined by the conditions:

- (i) $\delta(x) = 0$ for $x \neq 0$;
- (ii) $\delta(0) = \infty$;
- (iii) for any a < 0 < b one has

$$\int_{a}^{b} \delta(x) = 1.$$

Note. From the previous discussion it follows that

$$K(x,0) = \delta(x).$$

In terms of diffusion processes, $\delta(x)$ describes an infinitesimally small "drop" of ink concentrated at the origin. This "drop" then spreads with time.

1.2. **The general solution to the heat equation on the real line.** The heat kernel is the basic building block to obtain the general solution to the heat equation on the real line.

We begin by observing the following property:

Lemma 1.2. If U(x,t) is a solution to

$$U_t = \varkappa U_{xx}$$

then

(1.1)
$$V(x,t) \equiv \int_{-\infty}^{\infty} U(x-y,t)g(y)dy$$

is also a solution for any function g —as long as the integral converges.

Proof. This follows by direct computation:

$$V_t(x,t) = \frac{\partial}{\partial t} \int_{-\infty}^{\infty} U(x-y,t)g(y)dy = \int_{-\infty}^{\infty} U_t(x-y,t)g(y)dy,$$

$$V_{xx}(x,t) = \frac{\partial^2}{\partial x^2} \int_{-\infty}^{\infty} U(x-y,t)g(y)dy = \int_{-\infty}^{\infty} U_{xx}(x-y,t)g(y)dy.$$

Hence.

$$V_t(x,t) - \varkappa V_{xx}(x,t) = \int_{-\infty}^{\infty} \left(U_t(x-y,t) - \varkappa U_{xx}(x-y,t) \right) g(y) dy = 0.$$

Note. The operation given by (1.1) is called the convolution of U and g. This is sometimes denoted as

$$V(x,t) = (U * q)(x,t).$$

WEEK 11 NOTES

3

Now, consider the problem

$$(1.2) U_t = \varkappa U_{xx}, x \in \mathbb{R}, t > 0,$$

(1.3)
$$U(x,0) = f(x).$$

Claim: the (unique) solution to (1.2)-(1.3) is given by

$$U(x,t) = \int_{-\infty}^{\infty} K(x-y,t)f(y)dy,$$

with K denoting the heat kernel. Or, more explicitly,

(1.4)
$$U(x,t) = \int_{-\infty}^{\infty} \frac{e^{-\frac{(x-y)^2}{4\varkappa t}}}{\sqrt{4\varkappa\pi t}} f(y)dy.$$

The latter is known as the Fourier-Poisson formula.

As a consequence of Lemma 1.2, and given that K(x,t) satisfies the heat equation, then U(x,t) as defined by (1.4) is a solution to the heat equation.

Note. To fully address the claim it is only necessary to verify that U(x,0) = f(x).

1.2.1. Some auxiliary calculations. In the following it will be convenient to consider the function

(1.5)
$$Q(x,t) \equiv \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_0^{x/\sqrt{4\varkappa t}} e^{-s^2} ds, \qquad t > 0.$$

Observe that

$$Q_x(x,t) = \frac{1}{\sqrt{\pi}} \frac{d}{dx} \left(\frac{x}{\sqrt{4\varkappa t}}\right) e^{-\frac{x^2}{4\varkappa t}}$$
$$= \frac{e^{-\frac{x^2}{4\varkappa t}}}{\sqrt{4\pi\varkappa t}} = K(x,t).$$

Thus, Q(x,t) is the antiderivative (with respect to x) of K(x,t).

Next, we consider the limit of Q(x,t) as $t\to 0^+$. There are 2 cases:

(i) x > 0. Here we have

$$\lim_{t\to 0^+}Q(x,t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}}\int_0^\infty e^{-s^2}ds=\frac{1}{2}+\frac{1}{\sqrt{\pi}}\frac{\sqrt{\pi}}{2}=1.$$

(ii) x < 0. Here one has

$$\lim_{t\to 0^+}Q(x,t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}}\int_0^\infty e^{-s^2}ds=\frac{1}{2}-\frac{1}{\sqrt{\pi}}\int_{-\infty}^0 e^{-s^2}ds=\frac{1}{2}-\frac{1}{2}=0.$$

Hence, one concludes that

$$\lim_{t\to 0^+} Q(x,t) = \left\{ \begin{array}{ll} 0 & x<0 \\ 1 & x>0 \end{array} \right. \equiv H(x).$$

The function H defined above is called *Heaviside's step function*.

Note. As Q is the antiderivative of K it follows from the above discussion that

$$H'(x) = \delta(x)$$
.

That is, Dirac's delta is the derivative of Heaviside's step function.

1.2.2. Concluding the main computation. Using the properties of Q as discussed in the previous subsection one has that

$$U(x,t) = \int_{-\infty}^{\infty} K(x-y,t)f(y)dy$$

$$= \int_{-\infty}^{\infty} Q_x(x-y,t)f(y)dy$$

$$= -\int_{-\infty}^{\infty} Q_y(x-y,t)f(y)dy$$

$$= -Q(x-y,t)f(y)\Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} Q(x-y,t)f'(y)dy,$$

where in the third line one makes use of the chain rule to change the x-derivative to a y-derivative and in the fourth line one employs integration by parts to pass the derivative from Q to f. Now, as K(x-y,t) decays very fast to 0 as $|x-y| \to \infty$ it follows that

$$-Q(x-y,t)f(y)\bigg|_{-\infty}^{\infty}=0.$$

Hence,

$$U(x,t) = \int_{-\infty}^{\infty} Q(x-y,t)f'(y)dy.$$

We make use of this expression to compute the limit $t \to 0^+$:

$$U(x,0^{+}) = \int_{-\infty}^{\infty} Q(x-y,0^{+})f'(y)dy = \int_{-\infty}^{\infty} H(x-y)f'(y)dy$$
$$= \int_{-\infty}^{x} f'(y)dy = f(y)\Big|_{-\infty}^{x} = f(x),$$

where in the last line it has been assumed that $f(x) \to 0$ as $x \to -\infty$.

We summarise the previous discussion in the following:

Proposition 1.3. For t > 0, the Fourier-Poisson formula

$$U(x,t) = \int_{-\infty}^{\infty} \frac{e^{-\frac{(x-y)^2}{4\varkappa t}}}{\sqrt{4\varkappa\pi t}} f(y)dy$$

gives the (unique) solution to

$$U_t(x,t) = \varkappa U_{xx}(x,t), \qquad x \in \mathbb{R}, \quad t > 0,$$

 $U(x,0) = f(x).$

1.3. **Some examples.** In this section we discuss some examples of computation involving the Fourier-Poisson formula.

Example 1.4. Analyse the behaviour of the solution U(x,t) given by the Fourier-Poisson formula in the case

$$f(x) = H(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$$
.

WEEK 11 NOTES

5

In this case one has

$$U(x,t) = \frac{1}{\sqrt{4\pi\varkappa t}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4\varkappa t} H(y) dy$$
$$= \frac{1}{\sqrt{4\pi\varkappa t}} \int_{0}^{\infty} e^{-(x-y)^2/4\varkappa t} dy$$

as $H(x) \neq 0$ only for x > 0. Letting now

$$s = \frac{x - y}{\sqrt{4\varkappa t}} \Longrightarrow dy = -\sqrt{4\varkappa t}ds,$$

one finds that

$$\begin{split} U(x,t) &= -\frac{\sqrt{4\varkappa t}}{\sqrt{4\pi\varkappa t}} \int_{x/\sqrt{4\varkappa t}}^{-\infty} e^{-s^2} ds \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x/\sqrt{4\varkappa t}} e^{-s^2} ds \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{0} e^{-s^2} ds + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4\varkappa t}} e^{-s^2} ds \\ &= \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4\varkappa t}} e^{-s^2} ds. \end{split}$$

Thus, observe that, in fact

$$U(x,t) = Q(x,t).$$

We now investigate the behaviour of U(x,t) for fixed x as $t \to \infty$:

$$\lim_{t\to\infty}U(x,t)=\frac{1}{2}+\lim_{t\to\infty}\frac{1}{\sqrt{\pi}}\int_0^{x/\sqrt{4\varkappa t}}e^{-s^2}ds=\frac{1}{2}+\frac{1}{\sqrt{\pi}}\int_0^0e^{-s^2}ds=\frac{1}{2},$$
 as $x/\sqrt{4\varkappa t}\to 0$ as $t\to\infty$.

Example 1.5. Evaluate the Fourier-Poisson formula in the case

$$f(x) = e^{-x}.$$

Substituting the above expression in the formula one obtains

$$U(x,t) = \frac{1}{\sqrt{4\varkappa\pi t}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4\varkappa t} e^{-y} dy.$$

The exponent in the integral can be rearranged as

$$\begin{split} -\frac{(x-y)^2}{4\varkappa t} - y &= -\frac{x^2 - 2xy + y^2 + 4\varkappa ty}{4\varkappa t} \\ &= -\frac{(y+2\varkappa t - x)^2}{4\varkappa t} + \varkappa t - x. \end{split}$$

Hence,

$$U(x,t) = \frac{1}{\sqrt{4\varkappa\pi t}} \int_{-\infty}^{\infty} e^{-\frac{(y+2\varkappa t - x)^2}{4\varkappa t} + \varkappa t - x} dy$$
$$= \frac{e^{\varkappa t - x}}{\sqrt{4\varkappa\pi t}} \int_{-\infty}^{\infty} e^{-\frac{(y+2\varkappa t - x)^2}{4\varkappa t}} dy.$$

Letting

$$s = \frac{y + 2\varkappa t - x}{\sqrt{4\varkappa t}} \Longrightarrow ds = \frac{dy}{\sqrt{4\varkappa t}},$$

it follows then that

$$U(x,t) = \frac{e^{\varkappa t - x}}{\sqrt{4\varkappa\pi t}} \int_{-\infty}^{\infty} e^{-s^2} \sqrt{4\varkappa t} ds$$
$$= \frac{e^{\varkappa t - x}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-s^2} ds = e^{\varkappa t - x}.$$

Observe, in particular, that

$$U(x,t) \to \infty$$
, as $t \to \infty$.

Thus, the solution does not decay but grows at every point x. Plots of this solution for various values of t are shown below.

We conclude the list of examples with one particular solution to the heat equation which evidences an important property of the heat equation:

Example 1.6. Compute the solution to the heat equation on the real line if the initial condition is given by

$$f(x) = \frac{e^{x^2/4\varkappa}}{\sqrt{4\pi\varkappa}}.$$

In this case substitution of the initial condition into the Fourier-Poisson formula gives

$$U(x,t) = \frac{1}{\sqrt{4\pi\varkappa t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4\varkappa t}} \frac{e^{\frac{y^2}{4\varkappa}}}{\sqrt{4\pi\varkappa}} dy$$
$$= \frac{1}{4\pi\varkappa\sqrt{t}} \int_{-\infty}^{\infty} e^{\frac{y^2}{4\varkappa} - \frac{(x-y)^2}{4\varkappa t}} dy.$$

The exponent in the integral can be manipulated by completing squares to get

$$\begin{split} \frac{y^2}{4\varkappa} - \frac{(x-y)^2}{4\varkappa t} &= \frac{1}{4\varkappa} \left(y^2 - \frac{x^2}{t} - \frac{y^2}{t} + \frac{2xy}{t} \right) \\ &= \frac{1}{4\varkappa} \left(\left(1 - \frac{1}{t} \right) y^2 + \frac{2xy}{t} - \frac{x^2}{t} \right) \\ &= \frac{1}{4\varkappa} \left(\left(\frac{t-1}{t} \right) \left(y^2 + \frac{2xy}{t-1} + \frac{x^2}{(t-1)^2} \right) - \frac{x^2}{t} - \frac{x^2}{t(t-1)} \right) \\ &= \frac{1}{4\varkappa} \left(\left(\frac{t-1}{t} \right) \left(y + \frac{x}{t-1} \right)^2 - \frac{x^2}{t-1} \right). \end{split}$$

Hence,

$$\begin{split} U(x,t) &= \frac{1}{4\pi\varkappa\sqrt{t}} \int_{-\infty}^{\infty} e^{\frac{1}{4\varkappa}\left(\left(\frac{t-1}{t}\right)\left(y + \frac{x}{t-1}\right)^2 - \frac{x^2}{t-1}\right)} dy \\ &= \frac{e^{-\frac{x^2}{4\varkappa(t-1)}}}{4\pi\varkappa\sqrt{t}} \int_{-\infty}^{\infty} e^{-\frac{1}{4\varkappa}\left(\frac{1-t}{t}\right)\left(y + \frac{x}{t-1}\right)^2} dy. \end{split}$$

Finally, letting

$$s = \sqrt{\frac{1-t}{4\varkappa t}}\left(y + \frac{x}{t-1}\right) \Longrightarrow ds = \sqrt{\frac{1-t}{4\varkappa t}}dy,$$

one concludes that

$$\begin{split} U(x,t) &= \frac{e^{-\frac{x^2}{4\varkappa(t-1)}}}{4\pi\varkappa\sqrt{t}}\sqrt{\frac{4\varkappa t}{1-t}}\int_{-\infty}^{\infty}e^{-s^2}ds\\ &= \frac{e^{\frac{x^2}{4\varkappa(1-t)}}}{\pi\sqrt{4\varkappa(1-t)}}\sqrt{\pi}\\ &= \frac{e^{\frac{x^2}{4\varkappa(1-t)}}}{\sqrt{4\varkappa\pi(1-t)}}. \end{split}$$

Observe that

$$U(x,t) \longrightarrow \infty$$
 as $t \to 1$.

That is, the solution becomes singular in a finite amount of time! A plot of the solutions for various values of t is shown below:

Example 1.7. In this example we suppose the initial date f is a bump function so that f=0 for $|x|\geq R_0$ and $|f(x)|\leq C_0$. See for example the of a bump function graphed below.

Then by the Fourier-Poisson formula, we get

Follow Formula, we get
$$U(x,t) = \frac{1}{\sqrt{4\pi\varkappa t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4\varkappa t}} f(y) dy$$
$$= \frac{1}{\sqrt{4\pi\varkappa t}} \int_{-R_0}^{R_0} e^{-\frac{(x-y)^2}{4\varkappa t}} f(y) dy$$
$$\leq \frac{1}{\sqrt{4\pi\varkappa t}} \cdot 2R_0 \cdot C_0$$
$$\to 0, \text{ as } t \to \infty.$$

Here in the second line we used that f = 0 for $x \ge R_0$ or $x \le -R_0$.

We see that after a very long time, the solution to the heat equation tend to zero!