
WEEK 11 NOTES

1. FURTHER PROPERTIES OF THE HEAT KERNEL AND ITS APPLICATION TO SOLVE
THE HEAT EQUATIONS

Recall last week that we obtained a special solution to the heat equation called the heat
kernel

K(x, t) =
e−

x2

4κt
√
4κπt

.

1.1. Dirac’s delta function. In order to better understand the properties of the heat Kernel
at t = 0 consider the sequence of functions

{fλ(x)} =

e−
x2

λ2

λ
√
π

 , λ ∈ R+.

Graphs of the functions fλ for various values of λ can be seen in the figure below:
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Observe that as λ → 0, the Gaussian bells become increasingly peaked. One can then
check that:

(i) if x 6= 0 then fλ(x)→ 0 as λ→ 0;
(ii) if x = 0 then fλ(0)→∞ as λ→ 0;

(iii) moreover, one has that ∫ ∞
−∞

fλ(x)dx = 1

for all λ so that, in particular, one has

lim
λ→0

∫ ∞
−∞

fλ(x)dx = 1.

1
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The limit of the family {fλ} is not a proper function. However, one can for-
mally write

δ(x) ≡ lim
λ→0

fλ(x) = lim
λ→0

e−x
2/λ2

√
π

.

This is the so-called Dirac’s delta “function”.

Note. There is a branch of mathematics known as distribution theory aimed at
making sense of objects like Dirac’s delta.

Definition 1.1. Dirac’s delta, δ, is defined by the conditions:
(i) δ(x) = 0 for x 6= 0;

(ii) δ(0) =∞;
(iii) for any a < 0 < b one has∫ b

a

δ(x) = 1.

Note. From the previous discussion it follows that

K(x, 0) = δ(x).

In terms of diffusion processes, δ(x) describes an infinitesimally small “drop” of ink con-
centrated at the origin. This “drop” then spreads with time.

1.2. The general solution to the heat equation on the real line. The heat kernel is the
basic building block to obtain the general solution to the heat equation on the real line.

We begin by observing the following property:

Lemma 1.2. If U(x, t) is a solution to

Ut = κUxx
then

(1.1) V (x, t) ≡
∫ ∞
−∞

U(x− y, t)g(y)dy

is also a solution for any function g —as long as the integral converges.

Proof. This follows by direct computation:

Vt(x, t) =
∂

∂t

∫ ∞
−∞

U(x− y, t)g(y)dy =

∫ ∞
−∞

Ut(x− y, t)g(y)dy,

Vxx(x, t) =
∂2

∂x2

∫ ∞
−∞

U(x− y, t)g(y)dy =

∫ ∞
−∞

Uxx(x− y, t)g(y)dy.

Hence,

Vt(x, t)− κVxx(x, t) =
∫ ∞
−∞

(
Ut(x− y, t)− κUxx(x− y, t)

)
g(y)dy = 0.

�

Note. The operation given by (1.1) is called the convolution of U and g. This is sometimes
denoted as

V (x, t) = (U ∗ g)(x, t).
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Now, consider the problem

Ut = κUxx, x ∈ R, t > 0,(1.2)
U(x, 0) = f(x).(1.3)

Claim: the (unique) solution to (1.2)-(1.3) is given by

U(x, t) =

∫ ∞
−∞

K(x− y, t)f(y)dy,

with K denoting the heat kernel. Or, more explicitly,

(1.4) U(x, t) =

∫ ∞
−∞

e−
(x−y)2

4κt
√
4κπt

f(y)dy.

The latter is known as the Fourier-Poisson formula.

As a consequence of Lemma 1.2, and given thatK(x, t) satisfies the heat equation, then
U(x, t) as defined by (1.4) is a solution to the heat equation.

Note. To fully address the claim it is only necessary to verify that U(x, 0) = f(x).

1.2.1. Some auxiliary calculations. In the following it will be convenient to consider the
function

(1.5) Q(x, t) ≡ 1

2
+

1√
π

∫ x/
√
4κt

0

e−s
2

ds, t > 0.

Observe that

Qx(x, t) =
1√
π

d

dx

(
x√
4κt

)
e−

x2

4κt

=
e−

x2

4κt
√
4πκt

= K(x, t).

Thus, Q(x, t) is the antiderivative (with respect to x) of K(x, t).

Next, we consider the limit of Q(x, t) as t→ 0+. There are 2 cases:
(i) x > 0. Here we have

lim
t→0+

Q(x, t) =
1

2
+

1√
π

∫ ∞
0

e−s
2

ds =
1

2
+

1√
π

√
π

2
= 1.

(ii) x < 0. Here one has

lim
t→0+

Q(x, t) =
1

2
+

1√
π

∫ ∞
0

e−s
2

ds =
1

2
− 1√

π

∫ 0

−∞
e−s

2

ds =
1

2
− 1

2
= 0.

Hence, one concludes that

lim
t→0+

Q(x, t) =

{
0 x < 0
1 x > 0

≡ H(x).

The function H defined above is called Heaviside’s step function.

Note. As Q is the antiderivative of K it follows from the above discussion that

H ′(x) = δ(x).

That is, Dirac’s delta is the derivative of Heaviside’s step function.
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1.2.2. Concluding the main computation. Using the properties of Q as discussed in the
previous subsection one has that

U(x, t) =

∫ ∞
−∞

K(x− y, t)f(y)dy

=

∫ ∞
−∞

Qx(x− y, t)f(y)dy

= −
∫ ∞
−∞

Qy(x− y, t)f(y)dy

= −Q(x− y, t)f(y)
∣∣∣∣∞
−∞

+

∫ ∞
−∞

Q(x− y, t)f ′(y)dy,

where in the third line one makes use of the chain rule to change the x-derivative to a
y-derivative and in the fourth line one employs integration by parts to pass the derivative
from Q to f . Now, as K(x− y, t) decays very fast to 0 as |x− y| → ∞ it follows that

−Q(x− y, t)f(y)
∣∣∣∣∞
−∞

= 0.

Hence,

U(x, t) =

∫ ∞
−∞

Q(x− y, t)f ′(y)dy.

We make use of this expression to compute the limit t→ 0+:

U(x, 0+) =

∫ ∞
−∞

Q(x− y, 0+)f ′(y)dy =

∫ ∞
−∞

H(x− y)f ′(y)dy

=

∫ x

−∞
f ′(y)dy = f(y)

∣∣∣∣x
−∞

= f(x),

where in the last line it has been assumed that f(x)→ 0 as x→ −∞.

We summarise the previous discussion in the following:

Proposition 1.3. For t > 0, the Fourier-Poisson formula

U(x, t) =

∫ ∞
−∞

e−
(x−y)2

4κt
√
4κπt

f(y)dy

gives the (unique) solution to

Ut(x, t) = κUxx(x, t), x ∈ R, t > 0,

U(x, 0) = f(x).

1.3. Some examples. In this section we discuss some examples of computation involving
the Fourier-Poisson formula.

Example 1.4. Analyse the behaviour of the solution U(x, t) given by the Fourier-Poisson
formula in the case

f(x) = H(x) =

{
0 x < 0
1 x > 0

.
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In this case one has

U(x, t) =
1√
4πκt

∫ ∞
−∞

e−(x−y)
2/4κtH(y)dy

=
1√
4πκt

∫ ∞
0

e−(x−y)
2/4κtdy

as H(x) 6= 0 only for x > 0. Letting now

s =
x− y√
4κt

=⇒ dy = −
√
4κtds,

one finds that

U(x, t) = −
√
4κt√
4πκt

∫ −∞
x/
√
4κt

e−s
2

ds

=
1√
π

∫ x/
√
4κt

−∞
e−s

2

ds

=
1√
π

∫ 0

−∞
e−s

2

ds+
1√
π

∫ x/
√
4κt

0

e−s
2

ds

=
1

2
+

1√
π

∫ x/
√
4κt

0

e−s
2

ds.

Thus, observe that, in fact
U(x, t) = Q(x, t).

We now investigate the behaviour of U(x, t) for fixed x as t→∞:

lim
t→∞

U(x, t) =
1

2
+ lim
t→∞

1√
π

∫ x/
√
4κt

0

e−s
2

ds =
1

2
+

1√
π

∫ 0

0

e−s
2

ds =
1

2
,

as x/
√
4κt→ 0 as t→∞.
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Example 1.5. Evaluate the Fourier-Poisson formula in the case

f(x) = e−x.

Substituting the above expression in the formula one obtains

U(x, t) =
1√
4κπt

∫ ∞
−∞

e−(x−y)
2/4κte−ydy.
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The exponent in the integral can be rearranged as

− (x− y)2

4κt
− y = −x

2 − 2xy + y2 + 4κty
4κt

= − (y + 2κt− x)2

4κt
+ κt− x.

Hence,

U(x, t) =
1√
4κπt

∫ ∞
−∞

e−
(y+2κt−x)2

4κt +κt−xdy

=
eκt−x√
4κπt

∫ ∞
−∞

e−
(y+2κt−x)2

4κt dy.

Letting

s =
y + 2κt− x√

4κt
=⇒ ds =

dy√
4κt

,

it follows then that

U(x, t) =
eκt−x√
4κπt

∫ ∞
−∞

e−s
2√

4κtds

=
eκt−x√

π

∫ ∞
−∞

e−s
2

ds = eκt−x.

Observe, in particular, that

U(x, t)→∞, as t→∞.

Thus, the solution does not decay but grows at every point x. Plots of this solution for
various values of t are shown below.
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We conclude the list of examples with one particular solution to the heat equation which
evidences an important property of the heat equation:

Example 1.6. Compute the solution to the heat equation on the real line if the initial
condition is given by

f(x) =
ex

2/4κ
√
4πκ

.
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In this case substitution of the initial condition into the Fourier-Poisson formula gives

U(x, t) =
1√
4πκt

∫ ∞
−∞

e−
(x−y)2

4κt
e
y2

4κ
√
4πκ

dy

=
1

4πκ
√
t

∫ ∞
−∞

e
y2

4κ−
(x−y)2

4κt dy.

The exponent in the integral can be manipulated by completing squares to get

y2

4κ
− (x− y)2

4κt
=

1

4κ

(
y2 − x2

t
− y2

t
+

2xy

t

)
=

1

4κ

((
1− 1

t

)
y2 +

2xy

t
− x2

t

)
=

1

4κ

((
t− 1

t

)(
y2 +

2xy

t− 1
+

x2

(t− 1)2

)
− x2

t
− x2

t(t− 1)

)
=

1

4κ

((
t− 1

t

)(
y +

x

t− 1

)2

− x2

t− 1

)
.

Hence,

U(x, t) =
1

4πκ
√
t

∫ ∞
−∞

e
1
4κ

(
( t−1

t )(y+ x
t−1 )

2− x2

t−1

)
dy

=
e−

x2

4κ(t−1)

4πκ
√
t

∫ ∞
−∞

e−
1
4κ (

1−t
t )(y+ x

t−1 )
2

dy.

Finally, letting

s =

√
1− t
4κt

(
y +

x

t− 1

)
=⇒ ds =

√
1− t
4κt

dy,

one concludes that

U(x, t) =
e−

x2

4κ(t−1)

4πκ
√
t

√
4κt
1− t

∫ ∞
−∞

e−s
2

ds

=
e

x2

4κ(1−t)

π
√
4κ(1− t)

√
π

=
e

x2

4κ(1−t)√
4κπ(1− t)

.

Observe that

U(x, t) −→∞ as t→ 1.

That is, the solution becomes singular in a finite amount of time! A plot of the solutions
for various values of t is shown below:
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Example 1.7. In this example we suppose the initial date f is a bump function so that
f = 0 for |x| ≥ R0 and |f(x)| ≤ C0. See for example the of a bump function graphed
below.

f

x

Then by the Fourier-Poisson formula, we get

U(x, t) =
1√
4πκt

∫ ∞
−∞

e−
(x−y)2

4κt f(y)dy

=
1√
4πκt

∫ R0

−R0

e−
(x−y)2

4κt f(y)dy

≤ 1√
4πκt

· 2R0 · C0

→0, as t→∞.

Here in the second line we used that f = 0 for x ≥ R0 or x ≤ −R0.
We see that after a very long time, the solution to the heat equation tend to zero!


