Lecture 10A MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture

- Review of the symmetric Metropolis-Hastings (MH)
- Understand implementation issues with MH.

Symmetric MH algorithm

Goal: Generate a Markov chain $\theta_1, \theta_2, \ldots$ from the posterior $p(\theta \mid y)$.

Define $g(\theta) = p(\theta) p(y \mid \theta)$, the non-normalized posterior density/Bayes numerator.

- Start with θ_1 , randomly such that $g(\theta_1) > 0$. For each i > 1:
 - **1** Generate $\psi \sim N(\theta_{i-1}, b^2)$, for some b > 0.
 - 2 Compute the probability of acceptance

$$r = \min\left(1, \frac{g(\psi)}{g(\theta_{i-1})}\right) = \min\left(1, \frac{p(\psi)p(y \mid \psi)}{p(\theta_{i-1})p(y \mid \theta_{i-1})}\right).$$

3 Generate $U \sim U[0,1]$. Set

$$heta_i = egin{cases} oldsymbol{\psi}, & ext{if } U < r \ oldsymbol{ heta}_{i-1}, & ext{otherwise} \end{cases}$$

Working on the log scale

• Let $y = (y_1, ..., y_n)$ be the observed data. The likelihood $p(y\theta)$ is typically a product of $p(y_i \mid \theta)$

$$p(y \mid \theta) = \prod_{i=1}^{n} p(y_i \mid \theta).$$

- For numerical stability, we usually do the computations using the log of the posterior density to work with sums instead of products.
- Define

$$\mathcal{L}(\theta) = \log(p(\theta) p(y \mid \theta)) = \log(p(\theta)) + \log(p(y \mid \theta)),$$

the log of the posterior density (up to a constant).

Working on the log scale

So, the log of the likelihood is

$$\log(p(y \mid \theta)) = \sum_{i=1}^{n} \log(p(y_i \mid \theta)).$$

The acceptance probability is

$$\boldsymbol{\delta} = \min\left(0, \mathcal{L}(\boldsymbol{\psi}) - \mathcal{L}(\boldsymbol{\theta}_{i-1})\right).$$

Symmetric MH on the log scale

Define $\mathscr{L}(\theta) = \log\left(p(\theta)\,p(y\mid\theta)\right) = \log\left(p(\theta)\right) + \log\left(p(y\mid\theta)\right)$, the log of the posterior density (up to a constant).

Start with θ_1 randomly. For each i > 1:

- Generate $\psi \sim N(\theta_{i-1}, b^2)$, for some b > 0.
- Compute the probability of acceptance

$$\boldsymbol{\delta} = \min\left(0, \mathscr{L}(\boldsymbol{\psi}) - \mathscr{L}(\boldsymbol{\theta}_{i-1})\right).$$

 \odot Generate $U \sim U[0,1]$. Set

$$heta_i = egin{cases} \psi, & ext{if } \log U < \delta \ heta_{i-1}, & ext{otherwise} \end{cases}$$

See also exercise sheet 9

- The time until failure for a type of light bulb is exponentially distributed with parameter $\theta > 0$, where θ is unknown.
- We observe n bulbs, with failure times t_1, \ldots, t_n .
- We assume a Gamma (α, β) prior distribution for θ , where $\alpha > 0$ and $\beta > 0$ are known.
 - **4** What is the posterior pdf for θ given the data $t = (t_1, \dots, t_n)$?
 - ② Write down the steps of the Metropolis-Hastings algorithm to simulate realisations from the posterior distribution by using a normal proposal distribution with standard deviation b.

Let $t=(t_1,\ldots,t_n)$ be independent and identically distributed data from exponential(θ). We assume a $\mathsf{Gamma}(\alpha,\beta)$ prior distribution for θ . In the following R code, the data t is denoted by t, θ by theta, α by alpha and β by beta. We want to simulate from the posterior of θ , $p(\theta \mid t)$.

```
log.post = function(theta)
{
log.likelihood = dexp(t, rate=theta,log=TRUE)
log.prior= dgamma(theta, shape=alpha, rate=beta,log=TRUE)
return(log.prior+sum(log.likelihood))
}
```

 Explain what this function log.post is calculating. In your answer, include a formula involving the prior and likelihood that the function is implementing.

```
M = 5000
THETA=NULL
theta0=1
for (m in 1:M){
psi=rnorm(1,theta0,0.2)
log.r <- log.post(psi)-log.post(theta0)</pre>
if (log(runif(1)) < min(0, log.r))</pre>
{
theta0 <- psi
THETA=c(THETA, theta0)
```

- Explain what the command psi=rnorm(1,theta0,0.2) is doing in the context of the algorithm.
- Explain what the command if $(\log(\text{runif}(1)) < \min(0, \log.r))$ is doing in the context of the algorithm. In your answer, include a formula involving $p(\theta \mid y)$ that the code is implementing.

- Although the chain starts nowhere near the posterior mean of 0.11, it arrives there after a few iterations.
- The chain moves up and down many times though the parameter space.

Figure: Plot of the 5000 MCMC observations against iterations. Red line is the

Figure: Histogram of the sample vs the true posterior density in blue

Then arrives after few iterations at the region where the posterior density is high.

Figure: Blue: true posterior density. Green: true posterior mean. Red: MCMC observations

Choosing an MCMC starting value

- The algorithm eventually produces dependent points $\theta_1, \theta_2, ...$ distributed with pdf $p(\theta \mid y)$.
- But we have to start from some θ_1 , we can't choose it from $p(\theta \mid y)$.
- **QUESTION:** How do we choose the starting value θ_1 ?

Exponential data/Gamma: Choosing an MCMC starting value

Plot shows that there are observations at low-probability region and are not unrepresentative of the posterior density.

Figure: Left: Plot of the 5000 MCMC observations against iterations with $\theta_1 = 2$. Red line is the posterior mean. Right plot: true density with MCMC observations in red

Choosing an MCMC starting value

- The ideal is to start the chain at a region of the parameter space that has high posterior probability.
- However, with a complicated problem you might not know where a high probability region is.

Discarding early iterations: "burn-in"

- To diminish the influence of the starting values, we can generally discard the first 100 or the first 1000 iterations of the sample that are in a low probability region, and focus attention on the remaining observations.
- The practice of discarding early iterations of an MCMC run is known as "burn-in".

Discarding early iterations: "burn-in"

- A standard practice in MCMC approximation is as follows:
 - Start the chain at some point chosen for convenience.
 - 2 Run algorithm until some iteration B.
 - 3 Run the algorithm N more times generating, $\{\theta^{(B+1)}, \dots, \theta^{(B+N)}\}$
 - **②** Discard $\{\theta^{(1)}, \dots, \theta^{(B)}\}$ and use the empirical distribution of $\{\theta^{(B+1)}, \dots, \theta^{(B+N)}\}$ to approximate $p(\theta \mid y)$.
- The iterations up to and including B are called the "burn-in" period, in which the chain moves from its initial value to a region of the parameter space that has high posterior probability.
- When we say the chain has burned-in, we mean that it has entered a high-probability region.

Exponential data/Gamma: Burn in

A chain that has burned in

Figure: Left: Plot of the 5000 MCMC observations against iterations with $\theta_1=2$ after throwing out the first half iterations. Red line is the posterior mean. Right plot: true density with MCMC observations in red

Discarding early iterations

- In theory, longer burnin periods will cause the chain to "forget" its starting value so that the influence of this value will be lessened.
- If we have a good idea of where the high posterior probability region is, we can reduce the burn-in period by starting the chain there.
- In general, any value at where the posterior density is high will suffice, (e.g the MLE of the data or the posterior mode), and burn-in may not be necessary. The chain is burned in immediately.

Metropolis algorithm proposal distribution

 In the symmetric Metropolis-Hastings algorithm, the proposal distribution q is most often taken as a normal distribution centred on the current point

$$\psi \sim N(\theta_{i-1}, b^2).$$

- The efficiency of the Metropolis-Hastings sample depends on the choice of the standard deviation b.
- QUESTION: But, what value of b should we choose?

Metropolis algorithm proposal distribution

- Recall, the algorithm produces dependent points $\theta_1, \theta_2, ...$ distributed with pdf $p(\theta \mid y)$.
- An ideal choice of b would lead to a small correlation of subsequent realisations θ_{i-1} and θ_i .

Dependence of the iterations in each sequence

- The θ_{i-1} and θ_i simulated values from an MCMC algorithm are correlated:
 - There exists correlation between the θ_{i-1} and θ_i , since $\psi \sim q(\cdot \mid \theta_{i-1})$ and $\theta_i = \psi$ if ψ is accepted.
 - There exists correlation between θ_i and θ_{i-1} if ψ is rejected and $\theta_i = \theta_{i-1}$.

Metropolis algorithm proposal distribution

The choice of b will affect the acceptance probability,

$$r = \min\left(1, \frac{g(\psi)}{g(\theta_{i-1})}\right),$$

and hence the correlation in the Markov chain.

Metropolis algorithm proposal distribution

- For example, if b is very small, then ψ is close to θ_{i-1} . So $g(\psi)$ is close to $g(\theta_{i-1})$.
- Hence there is a high probability of accepting the proposal.
- But the chain will move very slowly around the space, and the Markov chain will be highly correlated.

Example: Sample paths with small b

- Figure: θ against iteration number i.
- Not good, proposal standard deviation b is too small. The acceptance probability is high but the chain is hardly moving.

Metropolis algorithm proposal distribution

- ullet On the other hand, if b is large, then ψ may be far from θ_{i-1} .
- And $g(\psi)$ may be much lower than $g(\theta_{i-1})$.
- Now there is a lower probability of accepting the proposal ψ .
- The chain makes large jumps (so moves fast) and remains at the same place quite often, and hence Markov chain will be highly correlated

Example: Sample paths with too large b

- Choosing too large b
- The chain moves fast but too many proposals are rejected (small acceptance probability), and hence remains for a long time at each accepted value.

Metropolis algorithm acceptance probability

b affects the acceptance probability.

 Probability that each proposal is accepted tends to decrease as the proposal scale b is increased.

Proposal scale and acceptance probability

b affects the correlation in the Markov chain

- Some intermediate value for b tends to be best for reducing the correlation.
- Its value depends on the model and the data.

Choosing b

- **Goal:** We want to choose b such that the chain moves fast and yields a high probability of acceptance, to reduce the correlation between θ_i and θ_{i+1} values.
- Theoretically, it has been shown that the optimal acceptance rate is around 0.234-(an asymptotic result).
- But experience suggests that an acceptance rate of around 20%-30%.
- Thus, the standard deviation *b* should be tuned to get an acceptance rate of around this level.

Choosing b

Recommendations

- It is common practice to implement several short runs of the Metropolis-Hastings algorithm under different values of b.
- Choose b that gives an acceptance rate r roughly between 20%-30%.
- ullet Once a reasonable value b is selected a longer more efficient Markov chain can be run.

Exponential data/Gamma: Choosing b

- We examine the choices b=0.001, b=0.02, b=0.2 and b=5 for the Exponential data/Gamma prior example.
- Table 1 shows the acceptance probability for the different choices of the proposal standard deviation b

	Probability of acceptance
b = 0.001	0.98
b = 0.02	0.84
b = 0.2	0.25
b=5	0.088

Exponential data/Gamma: b = 0.001

- \bullet Choosing b too small, b=0.001, the acceptance probability is very high.
- However, the chain is in a low posterior probability region, and moves very slowly toward a higher probability region.

Figure: Sample paths when b = 0.001

Exponential data/Gamma: b = 0.02

• Choosing b=0.02 yields again a high probability of acceptance of 0.84, but the chain changes only very slowly.

Figure: Sample paths when b = 0.02

Exponential data/Gamma: b = 5

- \bullet Choosing b=5 too large allows the chain to make large jumps, however the acceptance probability is small
- So the chain remains for a long time at each accepted value.

Figure: Sample paths when b = 5

Exponential data/Gamma: b = 0.2

- Choosing b=0.2 yields an acceptance probability of 0.24. This is the optimal choice.
- Sequence should move up and down through the parameter space many times.
- By selecting b carefully, we can decrease the correlation in the chain, leading to an improvement in the approximation to the posterior distribution.

Checking that sampling worked

- Finally, we need to check if the method has sampled the posterior distribution well enough.
- Check that summaries such as posterior median, 95% credible intervals are similar for each sequence.