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EEEVe ogend:

Today's lecture

@ Review of the symmetric Metropolis-Hastings (MH)

o Understand implementation issues with MH.



Symmetric MH algorithm

Goal: Generate a Markov chain 6;,0,,... from the posterior p(0 |y).

Define g(6) = p(0) p(y | 0), the non-normalized posterior density/Bayes
numerator.

o Start with 6;, randomly such that g(6;) > 0. For each i > 1:

@ Generate y ~ N(6;_1,b*), for some b > 0.
@ Compute the probability of acceptance

o (1fay) = ()

@ Generate U ~U|0,1]. Set

o — v, ifU<r
' 6;_1, otherwise




Working on the log scale

o Let y=(y),...,y.) be the observed data. The likelihood p(y0) is
typically a product of p(y; | 6)

p(y[9) prl\e

@ For numerical stability, we usually do the computations using the log
of the posterior density to work with sums instead of products.

o Define

Z(6) =log(p(6) p(y| 0)) =log(p(6)) +log(p(y|6)),

the log of the posterior density (up to a constant).



@ So, the log of the likelihood is

log(p(v ] 6)) Zlog (] 6))

@ The acceptance probability is

6 =min (0,2 (y) — Z(6i-1)) .



Symmetric MH on the log scale

Define #(8) = log (p(6) p(y | 8)) = log (p(8)) +log (p(y | 6)),
the log of the posterior density (up to a constant).

Start with 0; randomly. For each i > 1:

@ Generate ¥ ~ N(6;_1,b%), for some b > 0.
@ Compute the probability of acceptance

§ = min(0,.Z(y) — 2(6,1)).

@ Generate U ~ U|0,1]. Set

o1V if logU < &
' 0;_1, otherwise



Board example: Exponential data/Gamma prior

See also exercise sheet 9
o The time until failure for a type of light bulb is exponentially
distributed with parameter 6 > 0, where 0 is unknown.
o We observe n bulbs, with failure times 7q,...,t,.

o We assume a Gamma(a, f3) prior distribution for 6, where @ >0
and B > 0 are known.

@ What is the posterior pdf for 0 given the data r = (r1,...,t,)?

@ Write down the steps of the Metropolis-Hastings algorithm to
simulate realisations from the posterior distribution by using a
normal proposal distribution with standard deviation b.



Board example: Exponential data/Gamma prior

Let t = (t,,...,t,) be independent and identically distributed data from
exponential(68). We assume a Gamma(a, ) prior distribution for 6. In
the following R code, the data ¢ is denoted by t, 6 by theta, a by alpha
and B by beta. We want to simulate from the posterior of 8, p(6 |1).

log.post = function(theta)

{

log.likelihood = dexp(t, rate=theta,log=TRUE)

log.prior= dgamma(theta, shape=alpha, rate=beta,log=TRUE)
return(log.prior+sum(log.likelihood))

}

@ Explain what this function log.post is calculating. In your answer,
include a formula involving the prior and likelihood that the function
is implementing.



Board example: Exponential data/Gamma prior

M = 5000
THETA=NULL
thetal=1

for (m in 1:M){
psi=rnorm(1,theta0,0.2)

log.r <- log.post(psi)-log.post(theta0)
if (log(runif(1))<min(0,log.r))

{

theta0 <- psi

+

THETA=c (THETA, thetal)
}

o Explain what the command psi=rnorm(1,theta0,0.2) is doing in
the context of the algorithm.

o Explain what the command if (log(runif(1))<min(0,log.r))
is doing in the context of the algorithm. In your answer, include a
formula involving p(0 | y) that the code is implementing.



Board example: Exponential data/Gamma prior

@ Although the chain starts nowhere near the posterior mean of 0.11,
it arrives there after a few iterations.

@ The chain moves up and down many times though the parameter
space.
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- example: Exponential data/Gamma prior

Histogram of THETA
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Figure: Histogram of the sample vs the true posterior density in blue
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Board example: Exponential data/Gamma prior

Then arrives after few iterations at the region where the posterior density
is high.

true posterior density

theta

Figure: Blue: true posterior density. Green: true posterior mean. Red: MCMC
observations



Choosing an MCMC starting value

@ The algorithm eventually produces dependent points 6;,6,,...
distributed with pdf p(6 | y).

o But we have to start from some 6, we can't choose it from p(6 | y).

@ QUESTION: How do we choose the starting value 6,7



Exponential data/Gamma: Choosing an MCMC starting
value

Plot shows that there are observations at low-probability region and are
not unrepresentative of the posterior density.
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Figure: Left: Plot of the 5000 MCMC observations against iterations with
6, =2. Red line is the posterior mean. Right plot: true density with MCMC
observations in red



.:hoosing an MCMC starting value

o The ideal is to start the chain at a region of the parameter space
that has high posterior probability.

@ However, with a complicated problem you might not know where a
high probability region is.



Discarding early iterations: “burn-in”

@ To diminish the influence of the starting values, we can generally
discard the first 100 or the first 1000 iterations of the sample that
are in a low probability region, and focus attention on the remaining
observations.

o The practice of discarding early iterations of an MCMC run is known
as "burn-in".



Discarding early iterations: “burn-in”

o A standard practice in MCMC approximation is as follows:

@ Start the chain at some point chosen for convenience.
@ Run algorithm until some iteration B.

@ Run the algorithm N more times generating, {6¢*), ... 6#"}
@ Discard {6,...,0®} and use the empirical distribution of
{6 ... ;0¥*M} to approximate p(0 | y).

@ The iterations up to and including B are called the “burn-in" period,
in which the chain moves from its initial value to a region of the
parameter space that has high posterior probability.

@ When we say the chain has burned-in, we mean that it has entered a
high-probability region.



Exponential data/Gamma: Burn in

A chain that has burned in
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Figure: Left: Plot of the 5000 MCMC observations against iterations with
6, =2 after throwing out the first half iterations. Red line is the posterior
mean. Right plot: true density with MCMC observations in red



Discarding early iterations

o In theory, longer burnin periods will cause the chain to “forget" its
starting value so that the influence of this value will be lessened.

o If we have a good idea of where the high posterior probability region
is, we can reduce the burn-in period by starting the chain there.

@ In general, any value at where the posterior density is high will
suffice, (e.g the MLE of the data or the posterior mode), and
burn-in may not be necessary. The chain is burned in immediately.



Metropolis algorithm proposal distribution

@ In the symmetric Metropolis-Hastings algorithm, the proposal
distribution g is most often taken as a normal distribution centred

on the current point
¥~ N(6i1,b%).

o The efficiency of the Metropolis-Hastings sample depends on the
choice of the standard deviation b.

o QUESTION: But, what value of b should we choose?



./Ietropolis algorithm proposal distribution

@ Recall, the algorithm produces dependent points 0;,6,,...
distributed with pdf p(6 | y).

@ An ideal choice of b would lead to a small correlation of subsequent
realisations 0,_, and 6,.



Dependence of the iterations in each sequence

@ The 6,_; and 6, simulated values from an MCMC algorithm are
correlated:

@ There exists correlation between the 6,_, and 6, since y ~¢(- | 6,,)
and 6, =y if y is accepted.

o There exists correlation between 6, and 0,_, if v is rejected and
6,=6._, .



-Iis algorithm proposal distribution

@ The choice of b will affect the acceptance probability,

» = min (1,;2’2)) ,

and hence the correlation in the Markov chain.




Metropolis algorithm proposal distribution

o For example, if b is very small, then y is close to 6,_;. So g(y) is
close to g(6,—1).

@ Hence there is a high probability of accepting the proposal.

o But the chain will move very slowly around the space, and the
Markov chain will be highly correlated.



'xample: Sample paths with small b

o Figure: 0 against iteration number i.

o Not good, proposal standard deviation b is too small. The
acceptance probability is high but the chain is hardly moving.
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Metropolis algorithm proposal distribution

@ On the other hand, if b is large, then ¥ may be far from 6;_;.
o And g(y) may be much lower than g(6;_).
@ Now there is a lower probability of accepting the proposal .

o The chain makes large jumps (so moves fast) and remains at the
same place quite often, and hence Markov chain will be highly
correlated



Example: Sample paths with too large b

o Choosing too large b

@ The chain moves fast but too many proposals are rejected (small
acceptance probability), and hence remains for a long time at each
accepted value.
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Metropolis algorithm acceptance probability

b affects the acceptance probability.
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Proposal scale and acceptance probability

b affects the correlation in the Markov chain
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Choosing b

o Goal: We want to choose b such that the chain moves fast and
yields a high probability of acceptance, to reduce the correlation
between 6; and 6, values.

@ Theoretically, it has been shown that the optimal acceptance rate is
around 0.234-(an asymptotic result).

@ But experience suggests that an acceptance rate of around
20%-30%.

o Thus, the standard deviation b should be tuned to get an
acceptance rate of around this level.



Choosing b

Recommendations

o It is common practice to implement several short runs of the
Metropolis-Hastings algorithm under different values of b.

o Choose b that gives an acceptance rate r roughly between 20%-30%.

@ Once a reasonable value b is selected a longer more efficient Markov
chain can be run.



Exponential data/Gamma: Choosing b

o We examine the choices b =0.001, »=0.02, 5=0.2 and b =5 for
the Exponential data/Gamma prior example.

@ Table 1 shows the acceptance probability for the different choices of
the proposal standard deviation b

Probability of acceptance
b=0.001 | 0.98
b=0.02 | 0.84
b=0.2 0.25
b=5 0.088




Exponential data/Gamma: b =0.001

@ Choosing b too small, b =0.001, the acceptance probability is very
high.

@ However, the chain is in a low posterior probability region, and
moves very slowly toward a higher probability region.
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Figure: Sample paths when b =0.001



Exponential data/Gamma: b =0.02

o Choosing b =0.02 yields again a high probability of acceptance of
0.84, but the chain changes only very slowly.
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Exponential data/Gamma: b =5

@ Choosing b =5 too large allows the chain to make large jumps,
however the acceptance probability is small
@ So the chain remains for a long time at each accepted value.
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Exponential data/Gamma: b =0.2

@ Choosing b =0.2 yields an acceptance probability of 0.24. This is
the optimal choice.

o Sequence should move up and down through the parameter space
many times.

o By selecting b carefully, we can decrease the correlation in the chain,
leading to an improvement in the approximation to the posterior
distribution.
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-king that sampling worked

o Finally, we need to check if the method has sampled the posterior
distribution well enough.

@ Check that summaries such as posterior median, 95% credible
intervals are similar for each sequence.



