MTH 6151: Partial Diff. Equations. Solutions final exam 2018/2019.

Quistion 1. a) The method of characteristics transforms the pole $a(x_1y) U_x + b(x_1y) U_y = c(x_1y) U + d(x_1y)$ into the problem of solving the ordinary differential equations $\int \frac{dy}{dx} = \frac{b(x,y(x))}{a(x,y(x))}$ $\frac{dU}{dx}(x,y(x)) = \frac{c(x,y(x))}{a(x,y(x))} \mathcal{W}(x,y(x)) + \frac{d(x,y(x))}{a(x,y(x))}$ (X_1) (x_z) Equation (X1) gives the characteristic curves while (X2) allows to find V along the charact. annes (transport equation). [Book work] [Amarks] i) M_x + taux $M_{yy} - U = \cos y$ 6) Linuar second order, inhomogeneous equation. [2 marks] ii) $5UU_{H} - U^2U_x = 0$. Nonlinear second order, inhomogeneous. [2marks] [Bookwork].

c) Solve
$$M_x - 2M_t = 0$$
.
 $M(0,t] = cost$
The characteristic curves eatrsfy $\frac{dt}{dx} = -2$.
 $\Rightarrow t = -2x + C \iff C = t + 2x$. [2 marks]
Moreover, from general theory $\frac{dM}{dx} = 0$ along a characteristic.
 $\therefore M(x,t) = f(C) = f(2x+t)$. [1 mark]
In particular, $M(0,t] = f(C)$ as $C = t$ if $x = 0$,
but $M(0,t] = cost = cos C \Rightarrow f(C) = cos C$.
Hence, the required solution is $M(t,t) = cos(2x+t)$.] [2 marks]
(Similar to $W/Lectures$]
(A) Find the general solution to
 $M_t + x M_x = rin t$
The eqn. for the characteristics is $\frac{dt}{dx} = \frac{1}{x} \Rightarrow t(x) = Mx + C$.
 $Thus, \frac{dM}{dx} = \frac{sint}{x}$ (from general theory)
Eliminating t are gets $cM = rin h(C_x)$,
but $\int \frac{sin h(C_x)}{x} dx = \int sin sde = -cos 2 = -cos 0nCx$.

Hence,
$$M = -\cos \ln 2x + f(C)$$
.
Now, as $C = e^{t}/x$ our concludes that
 $M(x_{1}t) = -\cos t + f(\frac{e^{t}}{x})$. [Emarks]
[OW/hetwes]
Question 2.
a) Classify
i) $2 U_{xx} - 4 U_{xy} - 6 U_{yy} + U_{x} = 0$
Here $a = 2$, $b = -2$, $c = -6 \Rightarrow 4 + 2 - 6 = 16 > 0$
 \therefore Hyperbolic equation.
i) $U_{xx} + 2 U_{xy} + 17 U_{yy} = 0$.
 $a = 1$, $b = 1$, $c = 17$
 $\Rightarrow 1 - 1 \cdot 17 = -16 < 0$
 \therefore Elliptic equation.
(2 marks]
b) Given f(x) differentiable
i) Show that $U(x_{1}t) = f(x+ct)$ solves
 $M_{t} - c M_{x} = 0$.
Maining the chain rule $M_{x} = \frac{\partial M}{\partial x} = f^{1}(x+ct)$ [1 marks]
 $M_{t} = \frac{\partial M}{\partial t} = f^{1}(x+ct) \frac{d(ct)}{dt}$
 $= cf^{1}(x+ct)$. [1 marks]

Thus, readily 4

$$M_{\pm} - cM_{\pm} = c(f'(\pm tct) - f'(\pm tct)) = 0.$$
 [1 mark]
Estimilate $CW/[lctures]$ f
ii) Assume f has the form
Let the maximum of f be at $\pm \pm \pm$. Then for two one will
have that $\pm \pm \pm tct \Rightarrow \pm \pm \pm - ct$. Thus, for
two the initial profile moves to the left an amount of keeping.
its shape :
If $M(x_i0) = 0$ then $M(x_i,t) = 0$ for all t. So if there is no
initial profile then it consistent latter times.
Question 3.
(Similar to $CW/[lctures]$ (2marks).
(Question 4.
The term $\frac{1}{2}(f(\pm tct) + f(\pm - ct)) + \frac{1}{2c}\int_{x-ct}^{x+ct} g(s) ds$
The term $\frac{1}{2c}(f(\pm tct) + f(\pm - ct))$ gives the average of f at the
points (x-ct) and (x+ct).
On the other hand,
 $\frac{1}{2c}\int_{x-ct}^{x+ct} gives the average of g on the interval [x-ct, x+ct].
[Book work].
[Book work].
[Amarks]$

b) If $U(x_it)$ is a solution to the wave equation then $V(x_it) \equiv U(\alpha x_i \alpha t)$ is also a solution. 5.

Let
$$\int_{W=\alpha t}^{V=\alpha \times} \implies V(x_1t) = U(v, w).$$

Hence $\int_{\partial x}^{\Delta} = \frac{dv}{dx}\frac{\partial}{\partial v} = \alpha \frac{\partial}{\partial v}$
 $\int_{\partial t}^{\Delta} = \frac{dw}{dt}\frac{\partial}{\partial w} = \alpha \frac{\partial}{\partial v}$
 $\int_{\partial t}^{\Delta} = \frac{dw}{dt}\frac{\partial}{\partial w} = \alpha \frac{\partial}{\partial w}$
[2 marks]

$$\Rightarrow \frac{\partial^2}{\partial x^2} = \frac{\alpha^2 \partial^2}{\partial \sigma^2} \qquad ; \quad \frac{\partial^2}{\partial t^2} = \alpha \frac{\partial^2}{\partial w^2} \qquad [2 \text{ marks}]$$

Thus,

$$\frac{\partial^2 V}{\partial t^2} - \frac{c^2 \partial^2 V}{\partial x^2} = \alpha^2 \left(\frac{\partial^2}{\partial w^2} \mathcal{U}(v, w) - \frac{c^2 \partial^2}{\partial v^2} \mathcal{U}(v, w) \right)$$

=0 as U is a solution to the wave equ. [Similar to CW/ lectures] [2 marks]

c) Find the solution to the problem $\int U_{tt} - c^2 U_{xx} = 0, \quad x \in \mathbb{R}$ $\int U(x,0) = \frac{1}{1+x^2},$ $\int U_{t}(x,0) = 0.$

One can use D'Alembert's formula to directly write the solution. Setting $f(x) = \frac{1}{1+x^2}$

$$\frac{Question 4}{Consider} = \frac{1}{\sqrt{2}} \frac{1}{$$

$$X^{n}(\mathbf{x}) Y(\mathbf{y}) + X(\mathbf{x}) Y^{n}(\mathbf{y}) = 0.$$

$$\implies \frac{\chi''(x)}{\chi(x)} = -\frac{\gamma''(y)}{\gamma(y)} = k \quad \text{a constant} \quad [2 \text{ marks}]$$

as the LHS depends on x only and the RHS depends on y only. Hence, $\begin{cases} X'' = kX \\ Y'' = -kY \end{cases}$ [2 marks]

As $U(0_1y) = U(a_1y) = 0$, so that X(0) Y(y) = X(a) Y(y) = 0 as Y(y) not identically vanishing. X(0) = X(a) = 0.

Similarly, X(x)Y(0) = 0 so that Y(0) = 0. [2marks]

b) Show that
$$k<0$$
 if $X \neq 0$.
As $X(0) = X(a) = 0$, then we expect periodic solutions so that,
accordingly, $k<0$. To prove this consider

$$X^{II} - k X = 0 \implies \int_{0}^{a} X (X^{II} - k X) dX = 0.$$
 [2 marks]
$$\implies \int_{0}^{a} X X^{II} dx - k \int_{0}^{a} X^{2} dx$$

$$= X X^{I} \Big|_{0}^{a} - \int_{0}^{a} X^{12} dx - k \int_{0}^{a} X^{2} dx$$

Uint by parts
$$= - \int_{0}^{a} X^{12} dx - k \int_{0}^{a} X^{2} dx = 0$$
 [2 marks]

$$\implies -k \int_{\sigma}^{u} X^{2} dx = \int_{\sigma}^{u} X^{12} dx > 0 \quad \text{for } X \neq 0.$$

$$\text{Thus}, \ k < 0 \quad \text{E}$$

c) As
$$k < 0$$
, $lut = -\mu^2$, so that

$$\begin{cases}
X(x) = A \sin \mu x + B \cos \mu x, & [2 marks] \\
Y(y) = C \sin h \mu x + D \cosh \mu y. & [2 marks]
\end{cases}$$

4) Given
$$X(0) = X(a) = 0$$
, it follows from
 $X(x) = A \sin \mu x + B \cos \mu x$
that
 $X(0) = A \sin \mu x - 0 \Rightarrow \mu a = n\pi , n - 1, 2, 3, ...$
 $\therefore X(x) = \sin\left(\frac{m\pi x}{a}\right)$.
Also, as $Y(0) = 0$, thun from
 $Y(y) = C \sinh \mu y + D \cosh \mu y$
our gets
 $Y(0) = C \sinh h y + D \cosh h 0 = D = 0$.
 $\therefore Y(y) = \sinh(\frac{m\pi y}{a})$.
(2marks)
e) Collecting the previous adulations one finds the following
formity of solutions to the Laplace equation:
 $M_n(x,y) = \sin\left(\frac{m\pi x}{a}\right) \sinh\left(\frac{m\pi y}{a}\right) = n = 1, 2, 3, ...$ [2marks]
As the Laplace equ is linear, the principle of superposition
applies and the most general solution is given by

$$\mathcal{U}[x,y] = \sum_{m=1}^{\infty} \alpha_n \mathcal{U}_m(x,y) = \sum_{m=1}^{\infty} \alpha_n \sin\left(\frac{m\pi x}{\alpha}\right) \sinh\left(\frac{m\pi y}{\alpha}\right) \quad [2 \text{ may ks}]$$

with an constants.

f) Evaluating at
$$y=b$$
 one has
 $\mathcal{U}[x_1b] = \sum_{m=1}^{\infty} a_n \sin\left(\frac{m\pi x}{a}\right) \sinh\left(\frac{m\pi b}{a}\right)$
 $= \sin\left(\frac{5\pi x}{a}\right) + 2\sin\left(\frac{6\pi x}{a}\right)$.
Comparing coefficients one finds $[2marko]$

$$\sinh\left(\frac{5\pi b}{a}\right)a_{6} = 1$$
 , $\sinh\left(\frac{6\pi b}{a}\right)a_{6} = 2$.

$$\mathcal{U}[x,y] = \frac{1}{\sinh(5\pi b_{a})} \sin\left(\frac{5\pi x}{a}\right) \sinh\left(\frac{5\pi x}{a}\right)$$
$$+ \frac{2}{\sinh(6\pi b_{a})} \sin\left(\frac{6\pi x}{a}\right) \sinh\left(\frac{6\pi x}{a}\right). \quad [2 \text{ marks}]$$

[Similar to CW problems]

$$\begin{aligned} \underbrace{\operatorname{Question 5.}}_{a} & \text{II.} \end{aligned}$$

$$a) The Fourier-Poisson formula. \\ \underbrace{\operatorname{U(x_1 t)}}_{a} = \int_{-\infty}^{\infty} \frac{e^{-(x-y)^2 4xt}}{\sqrt{4\pi x t}} f(y) dy \\ \text{gives the (unique) solution to the initial value problem to the heat equation on the real line. [Bookwork] [2 marks] \\ b) Show that \\ \underbrace{\operatorname{U(x_1 t)}}_{a} = \frac{1}{2} + \frac{1}{\sqrt{4\pi}} \int_{0}^{x/\sqrt{4\pi x t}} e^{-s^2} ds \\ \text{is a solution to the heat equation. Find the value of } \underbrace{\operatorname{U(x_1 o+)}_{x > 0}, x > 0 \\ \text{Using the Fundamental Theorem of Calculus one gets} \\ \underbrace{\operatorname{U(x_1 t)}}_{a} = \frac{1}{\sqrt{4\pi}} e^{-x^2 4xt} \frac{d}{dx} \left(\frac{x}{\sqrt{4\pi x t}}\right) \\ = \frac{1}{\sqrt{4\pi}} e^{-x^2 4xt} \frac{1}{\sqrt{4\pi x t}} = \frac{1}{\sqrt{4\pi x t}} e^{-x^2 4xt} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}}_{Axt} = -\frac{2x}{4xt} \cdot \frac{1}{\sqrt{4\pi x t}} \frac{e^{-x^2 4xt}}{\sqrt{4\pi x t}} \cdot \frac{e^{-x^2 4xt}}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}}_{Axt} = -\frac{1}{2} \frac{x}{x t \sqrt{4\pi x t}} \cdot \frac{e^{-x^2 4x t}}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}}_{Axt} = -\frac{1}{2} \frac{x}{x t \sqrt{4\pi x t}} \cdot \frac{e^{-x^2 4x t}}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}}_{Axt} = -\frac{2x}{4xt} \cdot \frac{1}{\sqrt{4\pi x t}} \cdot \frac{e^{-x^2 4x t}}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}}_{Xx} = -\frac{2x}{4xt} \cdot \frac{1}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}}_{Xx} = -\frac{2x}{4xt} \cdot \frac{1}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}}_{Xx} = -\frac{2x}{4xt} \cdot \frac{1}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}}_{Xx} = -\frac{2x}{4xt} \cdot \frac{1}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}}_{Xx} = -\frac{2}{4xt} \cdot \frac{1}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}_{Xx} = -\frac{2}{4xt} \cdot \frac{1}{\sqrt{4\pi x t}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}_{Xx}}_{Xx} \\ \xrightarrow{\Psi_{xx}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}_{Xx}}_{Xx} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}_{Xx}}_{Xx} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}_{Xx}}_{Xx} \\ \xrightarrow{\Psi_{xx}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}_{Xx}}_{Xx} \\ \xrightarrow{\Psi_{xx}} \\ \xrightarrow{\Psi_{xx}} \\ \xrightarrow{\Psi_{xx}} \underbrace{\operatorname{U(x_1 t)}_{Xx}}_{Xx} \\$$

Also, from the chain vule,

$$U_{t}(x, t) = \frac{1}{\sqrt{\pi}} e^{-x^{2}/4xt} \frac{d}{dt} \left(\frac{x}{\sqrt{4xt}}\right) = -\frac{1}{2} \frac{1}{\sqrt{\pi}} \frac{x}{\sqrt{4\pi x}} - \frac{1}{t\sqrt{t}} e^{-x^{2}/4xt}$$

$$I2.$$

$$U_{t}(x, t) = \frac{1}{\sqrt{\pi}} e^{-x^{2}/4xt} \frac{d}{dt} \left(\frac{x}{\sqrt{4xt}}\right) = -\frac{1}{2} \frac{1}{\sqrt{\pi}} \frac{x}{\sqrt{4\pi x}} - \frac{1}{t\sqrt{t}} e^{-x^{2}/4xt}$$

$$I2.$$

$$I2.$$

$$I2.$$

$$I2.$$

$$I2.$$

$$I2.$$

$$I2.$$

Now, taking the limit
$$t \rightarrow 0$$
 one has that

$$\lim_{t \rightarrow 0} U(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-x^{2}} ds = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2} = 1.$$

$$t \rightarrow 0$$

$$f \text{ Unseen]}$$

$$F \text{ Appendix.}$$

$$F \text{ Provide the set of th$$

c) Maximum principle for the heat equation. Given a solution $\mathcal{U}(x,t)$ to the heat equation on the "rectangle" $\Omega = \mathcal{J}(x,t) | 0 < x < L, 0 < t < T \mathcal{J},$

Humaximum of U(xit) on Ω is attained at either the initial surface t=0 or at one of the boundaries x=0 or x=L. [Bookwork] [4 marks] d) Considur $M(x,t) = 1-x^2-22et$, solution to the heat equation. Find its maxima/minima in

$$\Omega = \{0 < x < 1, 0 < t < t \}$$

From the Principle of the Maximum one has that the maxima/minima can only occur at

$$\begin{cases} t=0 & , & 0 \le x \le 1 \\ x=0 & , & 0 \le t \le T \\ x=1 & , & 0 \le t \le T \end{cases}$$
[1 mark]

• Now $\mathcal{U}(x_{10}) = 1 - x^{2}$, $\mathcal{U}^{1}(x_{10}) = -2x<0$ so that there is an extremum at x=0. As $\mathcal{U}^{11}(x_{10}) = -2<0$ one has a local maximum of $\mathcal{U}(x_{10})$, $0 \le x \le 1$.

... The maximum/minimum of $M(x_10)$ for $0 \le x \le 1$ occur, respectively at x=0, x=1. [2marks]

• Now, look at the left boundary. In this case

$$U[0,t] = 1-2xt$$
, $0 \le t \le T$.
Thus $U(0,0] = 1$, $U(0,T) = 1-2xt < 1$
(maximum on the side) (minimum on the side).
[2 marks]

On the right boundary one has that $M(1,t) = -2 \times t < 0$. Thus, M(1,0) = 0(maximum on the side) $M(1,T) = -2 \times t < 0$ (maximum on the side) (minimum on the side)

Collecting the above, the minimum of $M(x_1t)$ occurs at (1,T)while the maximum is attained at (0,0). [1 mark]

[Similar to CW/ hetures]