MTH6151: Partial Diff. Equations. Solutions final exam 2018/2019.

Question 1.
a) The method of characteristics transforms the pole

$$
a(x, y) U_{x}+b(x, y) U_{y}=c(x, y) u+d(x, y)
$$

into the problem of solving the ordinary differential equations

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=\frac{b(x, y(x))}{a(x, y(x))} \\
\frac{d u}{d x}(x, y(x))=\frac{c(x, y(x))}{a(x, y(x))} u(x, y(x))+\frac{d(x, y(x))}{a(x, y(x))}
\end{array}\right.
$$

Equation ($*_{1}$) gives the characteristic curves while (A_{2}) allows to find U along the charact. aires (transport equation).
$[$ Bookwork]
b) i) $U_{x}+\tan x U_{y y}-U=\cos y$

Linear second order, inhomogeneous equation.
[2marks]
ii) $5 u u_{t t}-u^{2} u_{x}=0$.

Nonlimear second order, innomogeneans.
[2marks]
[Bookwork].
c) Solve $u_{x}-2 u_{t}=0$.

$$
U(0, t)=\cos t
$$

The characteristic curves satisfy $\frac{d t}{d x}=-2$.

$$
\begin{equation*}
\Rightarrow t=-2 x+C \Longleftrightarrow C=t+2 x . \tag{2marks}
\end{equation*}
$$

Moreover, from general theory $\frac{d U}{d x}=0$ along a characteristic.

$$
\therefore U(x, t)=f(c)=f(2 x+t)
$$

[1 mark]
In pouticulav, $M(0, t)=f(c)$ as $c=t$ if $x=0$, but $\quad U(0, t)=\cos t=\cos C \Rightarrow f(C)=\cos C$.
Hence, the required solution is $\| U(x, t)=\cos (2 x+t)$. [2 marks]
Similar to $w /$ lectures] [Similar to ow/ lectures]
d) Find the general solution to

$$
u_{t}+x u_{x}=\sin t
$$

The equ. for the characteristics is $\frac{d t}{d x}=\frac{1}{x} \Rightarrow t(x)=\ln x+C$.
Thus, $\frac{d U}{d x}=\frac{\sin t}{x}$ (from general theory)
Eliminating t are gets $\frac{d u s}{d x}=\frac{\sin \ln (\theta)}{x}$,
but $\int \frac{\sin \ln \left(C_{x}\right)}{x} d x=\int \sin z d z=-\cos z=-\cos \ln C x$.

Hence, $u=-\cos \ln c x+f(c)$.
Now, as $C=e^{t} / x$ one conclucks that

$$
u(x, t)=-\cos t+f\left(\frac{e^{t}}{x}\right) .
$$

[5marks]
[ow /lectures]
Question 2.
a) Classify
i) $2 u_{x x}-4 u_{x y}-6 u_{y y}+u_{x}=0$

Here $a=2, b=-2, c=-6 \Rightarrow 4+2.6=16>0$
\therefore Hyperbolic equation.
[2marks]
ii)

$$
\begin{aligned}
& u_{x x}+2 u_{x y}+17 u_{y y}=0 . \\
& a=1, \quad b=1, \quad c=17 \\
& \Rightarrow \quad 1-1.17=-16<0
\end{aligned}
$$

\therefore Elliptic equation.
[Bookwork]
b) Given $f(x)$ differentiable
i) Show that $U(x, t)=f(x+c t)$ solves

$$
u_{t}-c u_{x}=0 .
$$

Using the chain rule $U_{x}=\frac{\partial U}{\partial x}=f^{\prime}(x+c t) \quad$ [1 marks]

$$
\begin{aligned}
U_{t} & =\frac{\partial U}{\partial t}=f^{\prime}(x+c t) \frac{d(c t)}{d t} \\
& =c f^{\prime}(x+c t) .
\end{aligned}
$$

[1 marks]

Thus, readily

$$
u_{t}-c u_{x}=c\left(f^{\prime}(x+c t)-f^{\prime}(x+c t)\right)=0 \text {. [1 mark] }
$$

[Similar to Cw/ lectures]
ii) Assume f has the form

Let the maximum of f be at $x=x_{*}$. Then for $t>0$ one will have that $x_{*}=x+c t \Rightarrow x=x_{*}-c t$. Thus, for $t>0$ the initial profile moves to the left an amount ot keeping its shape.

iii) If $U(x, 0)=0$ then $U(x, t)=0^{x}$ for all t. So if there is no initial profile then it cannot arise at latter times.
Question 3.
[3marks]
a) Given

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

The term $\frac{1}{2}(f(x+c t)+f(x-c t))$ gives the average of f at the points $(x-c t)$ and $(x+c t)$.

On the other hand,
$\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s$ gives the average of g on the interval $[x-c t, x+c t]$.
[Bookwork].
b) If $U(x, t)$ is a solution to the wave equation then $V(x, t) \equiv U(\alpha x, \alpha t)$ is also a solution.

Let $\left\{\begin{array}{l}v=\alpha x \\ w=\alpha t\end{array} \Rightarrow v(x, t)=u(v, w)\right.$.
Hence

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x}=\frac{d v}{d x} \frac{\partial}{\partial v}=\alpha \frac{\partial}{\partial v} \\
\frac{\partial}{\partial t}=\frac{d w}{d t} \cdot \frac{\partial}{\partial w}=\alpha \frac{\partial}{\partial w}
\end{array}\right.
$$

[2 marks]

$$
\Rightarrow \frac{\partial^{2}}{\partial x^{2}}=\frac{\alpha^{2} \partial^{2}}{\partial v^{2}} ; \quad ; \quad \frac{\partial^{2}}{\partial t^{2}}=\alpha \frac{\partial^{2}}{\partial w^{2}}
$$

[2 marks]
Thus,

$$
\frac{\partial^{2} v}{\partial t^{2}}-\frac{c^{2} \partial^{2} v}{\partial x^{2}}=\alpha^{2}\left(\frac{\partial^{2}}{\partial w^{2}} u(v, w)-c^{2} \frac{\partial^{2} u(v, w)}{\partial v^{2}}\right)
$$

[Similar to $a w /$ lectures] $=0$ as U is a solution to the wave eqn.
c) Find the solution to the problem

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0, x \in \mathbb{R} \\
u_{(x, 0)}=\frac{1}{1+x^{2}}, \\
u_{t}(x, 0)=0
\end{array}\right.
$$

One can use D'Alembert's formula to directly write the solution. setting $f(x)=\frac{1}{1+x^{2}}$
one obtains

$$
U(x, t)=\frac{1}{2}\left(\frac{1}{1+(x+c t)^{2}}+\frac{1}{1+(x-c t)^{2}}\right)
$$

[3marks]
Initially one has the profile

For $t>0$ the profile splits into two bits of hall the original size - one moving to the left, the other to the right.

d) The wave equation has a finite speed of propagation (c) while the heat equation has infinite speed of propagation.
[4 marks]
[Bookwork]

Question 4 .

$$
\text { Consider }\left\{\begin{array}{l}
U_{x x}+U_{y y}=0 \quad(x, y) \in \Omega=\{0<x<a, 0<y<b\} . \\
U(x, 0)=0, U(x, b)=f(x), \\
U(0, y)=0, U(a, y)=0 .
\end{array}\right.
$$

a) Substituting $U(x, y)=X(x) y(y)$ into $U_{x x}+U_{y y}=0$ one readily obtains

$$
\begin{gathered}
X^{\prime \prime}(x) Y(y)+X(x) Y^{\prime \prime}(y)=0 . \\
\Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=-\frac{Y^{\prime \prime}(y)}{Y(y)}=k \quad \text { a constant } \quad[2 \text { marks }]
\end{gathered}
$$

as the LHS depends on x only and the RHS depends on y only. Hence,

$$
\left\{\begin{array}{l}
x^{\prime \prime}=k X \tag{2marks}\\
y^{n}=-k y
\end{array}\right.
$$

As $U(0, y)=U(a, y)=0$, so that

$$
X(0) Y(y)=X(a) Y(y)=0 \text { as } Y(y) \text { not identically }
$$ vanishing.

$$
\therefore X(0)=X(a)=0 .
$$

Similarly, $X(x) Y(0)=0$ so that $Y(0)=0$. [2marks]
b) Show that $k<0$ if $x \neq 0$.

As $X(0)=X(a)=0$, then we expect periodic solutions so that, accordingly, $k<0$. To prove this consider

$$
\begin{aligned}
& X^{\prime \prime}-k X=0 \\
& \begin{aligned}
& \Rightarrow \int_{0}^{a} x x^{\prime \prime} d x-k \int_{0}^{a} x\left(x^{\prime \prime}-k x\right) d x=0 . \quad \text { [2 marks] } \\
&=\left.X x^{\prime}\right|_{0} ^{a}-\int_{0}^{a} x^{12} d x-k \int_{0}^{a} x^{2} d x \\
&=-\int_{0}^{a} x^{12} d x-k \int_{0}^{a} x^{2} d x=0 \quad \text { byparts } \\
& \Rightarrow-k \int_{0}^{a} x^{2} d x=\int_{0}^{a} x^{12} d x>0 \quad \text { for } x \neq 0 . \quad \text { [2marks] } \\
& \text { Thus, } k<0 \quad \text { 图 }
\end{aligned}
\end{aligned}
$$

c) As $k<0$, let $k=-\mu^{2}$, so that

$$
\begin{cases}X(x)=A \sin \mu x+B \cos \mu x, & \text { [2 mark e }] \\ Y(y)=C \sinh \mu x+D \cosh \mu y . & \text { [2marks }]\end{cases}
$$

d) Given $X(0)=X(a)=0$, it follows from

$$
X(x)=A \sin \mu x+B \cos \mu x
$$

that

$$
\begin{aligned}
& X(0)=A \sin 0+B \cos 0=B=0 . \quad[2 \text { marks }] \\
\Rightarrow X(a)= & A \sin \mu a=0 \Rightarrow \mu a=n \pi, n=1,2,3, \ldots \\
\therefore & X(x)=\sin \left(\frac{n \pi x}{a}\right) .
\end{aligned}
$$

Also, as $y(0)=0$, then from

$$
Y(y)=C \sinh _{\mu y}+D \cosh \mu y
$$

ane gets

$$
\begin{aligned}
& Y(0)=C \sinh 0+D \cosh 0=D=0 . \\
& \therefore Y(y)=\sinh \left(\frac{n \pi y}{a}\right) .
\end{aligned}
$$

[2marks]
e) Collecting the previous calculations one finds the following family of solutions to the Laplace equation:

$$
U_{n}(x, y)=\sin \left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi y}{a}\right) \quad n=1,2,3, \ldots[2 \text { marks }]
$$

As the Laplace equ is linear, the principle of superposition applies and the most general solution is given by

$$
\begin{align*}
U(x, y) & =\sum_{n=1}^{\infty} a_{n} U_{n}(x, y) \tag{10.}\\
& =\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi y}{a}\right) \quad[2 \text { marks] }
\end{align*}
$$

with an constants.
f) Evaluating at $y=b$ one has

$$
\begin{aligned}
U(x, b) & =\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi b}{a}\right) \\
& =\sin \left(\frac{5 \pi x}{a}\right)+2 \sin \left(\frac{6 \pi x}{a}\right) .
\end{aligned}
$$

Comparing coefficients one finds

$$
\begin{aligned}
& \sinh \left(\left.\frac{5 \pi b}{a} \right\rvert\, a_{5}=1, \sinh \left(\frac{6 \pi b}{a}\right) a_{6}=2 .\right. \\
& \therefore U(x, y)= \\
& \quad \frac{1}{\sinh (5 \pi b / a)} \sin \left(\frac{5 \pi x}{a}\right) \sinh \left(\frac{5 \pi x}{a}\right) \\
& \\
& \quad+\frac{2}{\sinh (6 \pi b / a)} \sin \left(\frac{6 \pi x}{a}\right) \sinh \left(\frac{6 \pi x}{a}\right) . \quad[2 \text { marks }]
\end{aligned}
$$

[Similar to CW problems]

Question 5.
a) The Fourier - Poisson formula

$$
U(x, t)=\int_{-\infty}^{\infty} \frac{e^{-(x-y)^{2} / 4 x t}}{\sqrt{4 \pi x t}} f(y) d y
$$

gives the (unique) solution to the initial value problem to the heat equation on the real line. [Bookwork]
b) Show that

$$
U(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{x} / \sqrt{4 x t} e^{-s^{2}} d s
$$

is a solution to the heat equation. Find the value of $U\left(x, 0^{+}\right), x>0$.
Using the Fundamental Theorem of Calculus one gets

$$
\begin{aligned}
& U_{x}(x, t)=\frac{1}{\sqrt{\pi}} e^{-x^{2} / 4 x t} \frac{d}{d x}\left(\frac{x}{\sqrt{4 x t}}\right) \\
&=\frac{1}{\sqrt{\pi}} e^{-x^{2} / 4 x t} \frac{1}{\sqrt{4 x t}}=\frac{1}{\sqrt{4 \pi x t}} e^{-x^{2} / 4 x t} . \\
& \Rightarrow U_{x x}(x, t)=-\frac{2 x}{4 x t} \cdot \frac{1}{\sqrt{4 \pi x t}} \frac{e^{-x^{2} / 4 x t}}{\sqrt{\pi}}=-\frac{1}{2} \frac{x}{x t \sqrt{4 \pi x t}} \cdot \frac{e^{-x^{2} / 4 x t}}{\sqrt{\pi}} \\
& {[2 \text { marks] }}
\end{aligned}
$$

Also, from the chain rule,

$$
\begin{aligned}
& u_{t}(x, t)=\frac{1}{\sqrt{\pi}} e^{-x^{2} / 4 x t} \frac{d}{d t}\left(\frac{x}{\sqrt{4 x t}}\right)=-\frac{1}{2} \frac{1}{\sqrt{\pi}} \frac{x}{\sqrt{4 \pi x}} \cdot \frac{1}{[\sqrt{t}} e^{-x^{2} / 4 x t} . \\
& {[2 \text { marks }]} \\
& \Rightarrow u_{t}-x u_{x x}=0 .
\end{aligned}
$$

Now, taking the limit $t \rightarrow 0$ one has that

$$
\begin{aligned}
& \lim _{t \rightarrow 0} U(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2}} d s=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2}=1 . \\
& \quad \text { [Unseen] } \quad \text { [2 marks] }
\end{aligned}
$$

c) Maximum principh for the heat equation.

Given a solution $U(x, t)$ to the heat equation on the "rectangle"

$$
\Omega=\{(x, t) \mid 0<x<L, \quad 0<t<T\},
$$

the maximum of $U(x, t)$ on Ω is attained at either the initial surface $t=0$ or at one of the boundaries $x=0$ or $x=L$.
[Bookwork]
d) Consider $U(x, t)=1-x^{2}-2 x t$, solution to the heat equation. Find its maxima/minima in

$$
\Omega=\{0<x<1,0<t<\tau\} .
$$

From the Principle of the Maximum one has that the maxima/minima can only occur at

$$
\begin{cases}t=0, & 0 \leqslant x \leqslant 1 \\ x=0, & 0 \leqslant t \leqslant T \\ x=1 & , 0 \leqslant t \leqslant T\end{cases}
$$

[1 mark]

- Now $U(x, 0)=1-x^{2}, U^{\prime}(x, 0)=-2 x<0$ so that there is an extremum at $x=0$. As $U^{\prime \prime}(x, 0)=-2<0$ one has a local maximum of $U(x, 0), 0 \leqslant x \leqslant 1$.
\therefore The maximum/minimum of $M(x, 0)$ for $0 \leqslant x \leqslant 1$ occur, respectively at $x=0, x=1$.
[2marks]
- Now, wok at the left boundary. In this case

$$
U(0, t)=1-2 x t, \quad 0 \leqslant t \leqslant T .
$$

Thus $U(0,0)=1, \quad U(0, T)=1-2 x T<1$ (maximum on the side)
(minimum on the side).

On the right boundary one has that $U(1, t)=-2 x t<0$.
Thus, $u(1,0)=0$

$$
U(1, T)=-2 x T<0
$$

(maximum on theside)
(minimum on the side)
Collecting the above, the minimum of $U(x, t)$ occurs at $(1, \tau)$ while the maximum is attained at $(0,0)$. [1 mark]
[Similar to cw/ uctures].

