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Throughout we only consider partial differential equations in two independent vari-
ables (x, y) or (x, t).

Question 1. [20 marks]

(a) Explain, in few words, how the method of characteristics to solve a first order
linear partial differential equation works. [4]

(b) Determine whether the following partial differential equations are linear or
non-linear. Also, say whether they are homogeneous or inhomogeneous:

(i) Ux + tan xUyy − U = cos y, [2]

(ii) 5UUtt − U2Ux = 0. [2]

(c) Using the method of characteristics, or otherwise, solve the equation

Ux − 2Ut = 0

subject to the condition
U(0, t) = cos t. [5]

(d) Find the general solution to the equation

Ut + xUx = sin t. [7]
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Question 2. [12 marks]

(a) Classify, according to type (hyperbolic, elliptic, parabolic), the equations:

(i) 2Uxx − 4Uxy − 6Uyy + Ux = 0. [2]

(ii) Uxx + 2Uxy + 17Uyy = 0. [2]

(b) Suppose f (x) is a differentiable function.

(i) Show that
U(x, t) = f (x + ct)

solves the partial differential equation

Ut − cUx = 0. [3]

(ii) If f has the form

f

x

describe the qualitative behaviour of the solution U(x, t) given in (i). [3]

(iii) What happens with the solution if U(x, 0) = 0? [2]
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Question 3. [20 marks]

(a) D’Alembert’s formula is given by

U(x, t) =
1
2
�

f (x + ct) + f (x − ct)
�
+

1
2c

� x+ct

x−ct
g(s)ds.

Provide a brief discussion of the meaning of the two terms in the right-hand
side of the above formula. [4]

(b) Let U(x, t) denote a solution to the wave equation

Utt − c2Uxx = 0.

Show that
V(x, t) ≡ U(αx, αt)

is also a solution to the wave equation for any constant α. [6]

(c) Find the solution to the problem

Utt − c2Uxx = 0, x ∈ R,

U(x, 0) =
1

1 + x2 ,

Ut(x, 0) = 0.

Provide a sketch of the solution for different times. [6]

(d) What is the main difference between the wave equation and the heat equation
in terms of the speed of propagation of information? [4]
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Question 4. [28 marks]
Throughout this question, consider the following problem for the Laplace equation
on a rectangle:

Uxx + Uyy = 0, (x, y) ∈ Ω = {0 < x < a, 0 < y < b},
U(x, 0) = 0 U(x, b) = f (x),
U(0, y) = 0, U(a, y) = 0.

(a) Following the method of separation of variables consider solutions of the form

U(x, y) = X(x)Y(y)

where X and Y are functions of a single argument. Show that X and Y satisfy
the ordinary differential equations

X�� = kX,
Y�� = −kY,

for some constant k. Moreover, show that

X(0) = X(a) = 0, Y(0) = 0. [6]

(b) Show that the constant k obtained in (a) must be negative if X(x) is not
identically 0 for x ∈ [0, a]. [6]

(c) Find the general solution to the ordinary differential equations in (a). [4]

(d) Use the conditions X(0) = X(a) = 0 to determine the value of k and show that
the non-zero solutions X obtained in (c) must be of the form

X(x) = sin
�nπx

a

�
, n = 1, 2, 3, . . . .

Moreover, show that if Y(0) = 0 then

Y(y) = sinh
�nπy

a

�
. [4]

(e) Use the Principle of Superposition to find the general solution to the Laplace
equation on the rectangle Ω with the prescribed boundary conditions. [4]

(f) Assuming that the general solution to the problem can be written as

U(x, y) =
∞

∑
n=1

an sin
�nπx

a

�
sinh

�nπy
a

�

where an are constants, find the particular solution corresponding to the initial
data

U(x, b) = sin
�

5πx
a

�
+ 2 sin

�
6πx

a

�
. [4]
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Question 5. [20 marks]

(a) Briefly explain the significance of the Fourier-Poisson formula in the study of
the heat equation. [4]

(b) Show that

U(x, t) =
1
2
+

1√
π

� x/
√

4κt

0
e−s2

ds,

is a solution to the heat equation

Ut = κUxx.

Find the value of limt→0+ U(x, t) if x > 0. [6]

(c) Explain what is the Maximum Principle for the heat equation. [4]

(d) Consider the solution
U(x, t) = 1 − x2 − 2κt

of the heat equation
Ut = κUxx.

Find the location of its maxima and minima in the rectangle

{0 ≤ x ≤ 1, 0 ≤ t ≤ T}. [6]

End of Paper – An appendix of 1 page follows.
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The Laplacian in polar coordinates
The expression for the Laplacian for a function U on R2 in standard spherical
coordinates (r, θ) is given by

ΔU =
∂2U
∂r2 +

1
r

∂U
∂r

+
1
r2

∂2U
∂θ2 .

Orthogonality properties of the sine function

� L

0
sin

�
nπx

L

�
sin

�
mπx

L

�
dx =

�
L/2 for n = m

0 for n �= m .

Gaussian integral

� ∞

0
e−s2

ds =
√

π

2
.

D’Alembert’s formula

U(x, t) =
1
2
�

f (x + ct) + f (x − ct)
�
+

1
2c

� x+ct

x−ct
g(s)ds,

where
U(x, 0) = f (x), Ut(x, 0) = g(x).

The Fourier-Poisson formula

U(x, t) =
� ∞

−∞

e−
(x−y)2

4κt√
4κπt

f (y)dy.

End of Appendix.
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