MTH6151: Partial diff. equs. Solutions to the Taamury 2021 exam.

Question 1.
a) (i) What happens when the characteristic curves of a first order lima pol do not cover the whole plane?
Q If there exists a point $\left(x_{*}, y_{*}\right) \in \mathbb{R}$ which is not covered by a characteristic curve, then the solution $U(x, y)$ is not defined at the point. [3 marks] [Book work].
(ii) What happens when two (or more) characteristics intersect?
\rightarrow The solution of the transport equation from which one computes the solution to the pole is not ch fined uniquely. Hence, the solution $U(x, y)$ to the pol breaks down at the intersection of the solutions.
[3 marks] [Bookwork]
b) State which of the following equs. ane linear or non-linear.
i) $U_{x}+e^{y} U_{y}=0$.
(linear)
[1 mark]
ii) $\frac{U_{x}}{1+U_{x}^{2}}+\frac{U_{y}}{1+U_{y}^{2}}=0$. (won-limear). [1 mark]
[Bookwork].
(c) Find the solution to

$$
u_{x}-2 u_{t}=0, \quad u(0, t)=\tanh t .
$$

\rightarrow This is a firstovder pole with constant coeffs. The general solution is given by
$U(x, t)=f(b x-a t)$ whir f is an arbitrary function.
there $a=1, b=2$. Thus,

$$
M(x, t)=f(-2 x-t)=f(2 x+t) \text { (redefining } f) \text {. [2 marks] }
$$

Now, $\mathcal{M}(0, t)=f(t)=\tanh t$ so that the particular solution we look for is

$$
U(x, t)=\tanh (2 x+t) .
$$

[Similar to CW]
ii) In the previous problem the information is provided on the vertical axis. Thus, this is a bounclany value problem.
d) $\left\{\begin{array}{l}N_{t}+N_{x}=-e^{x} N \\ N(x, 0)=f(x) \\ N(0, t)=e^{-t}\end{array}\right.$

Q In this population mosul the mortality rate $\mu(x,+)=e^{x}$ increases for older age groups. Thereare, however, no seasonal variation on the mortality rate. The initial population distribution is $f(x)$. The boundary condition e^{-t} gives the number of births at time. It decreases quickly with time. [3 marks] [Similar to discussion in class]
e) i) Find the solution to

$$
x u_{x}+y u_{y}=k u_{+1}, \quad k \text { constant. }
$$

2 The eqn. for the characteristic curves is:

$$
\frac{d y}{d x}=\frac{y}{x}
$$

[2 marks]

The solution is given lo y $y(x)=C x$ (lines) C a constant.
Now, the transport eqn along the characteristics is

$$
\frac{d U(x, y(x))}{d x}=\frac{k}{x} U(x, y(x))+\frac{1}{x} . \quad[1 \text { mark }]
$$

Write for simplicity as

$$
\begin{aligned}
& \text { rite for simplicity as } \\
& \left.\begin{array}{rl}
u^{\prime}-\frac{k}{x} u=\frac{1}{x} \leadsto \text { integrating factor } \begin{array}{rl}
e^{-k \int \frac{d x}{x}} & =e^{-k \ln x} \\
& =x^{-k}
\end{array}
\end{array} . \begin{array}{l}
\sim
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow \underbrace{x^{-k} u^{\prime}-k x^{-k-1} u}_{\left(x^{-k} u\right)^{\prime}}=x^{-k-1}
$$

So, integrating: $\quad x^{-k} u=\int x^{-k-1} d x+f(C)$

$$
=-\frac{1}{k} x^{-k}+f(c)
$$

$$
\Rightarrow M(x, y(x))=-\frac{1}{k}+x^{k} \cdot f(c)
$$

[3 marks]
But $C=y / x$

$$
\therefore U(x, y)=-\frac{1}{k}+x^{k} f(y / x) .
$$

ii) The characteristics are limes $y=C \times$ passing through the origin with slope C :

[Similar to examples in $[W]$.

Question 2.
a) When is $a U_{x x}-a U_{x y}-c U_{x}+d U_{y}=f$. elliptic?
\rightarrow The discriminant reads $(a / 2)^{2} \geqslant 0$. Thus, the eqn. can never be elliptic!
$[2$ marks]
[similar to cw]
b) When is $a U_{x y}+b U_{x}+c U_{y}+U=0$ parabolic?

4 The discriminant is, again, $(a / 2)^{2}>0$. So the eqn. can never be parabolic.
[2marks]
[Similar to CW]
c) Conserved quantity for a solution to the wave eqn.
\longrightarrow A conserved quantity for a som. To the wave eqn. is some function
$Q[U]$ inpencling on $U(x, t)$, a som., such that

$$
\frac{d Q[u]}{d t}=0 . \quad\left[\begin{array}{l}
\text { marks }] \\
{[\text { Bookwork }] .}
\end{array}\right.
$$

d) Given $\left\{\begin{array}{l}U_{t t}-c^{2} U_{x x}=0, x \in[0, L], t \geqslant 0 . \\ U_{(x, 0)}=f(x), \\ U_{t}(x, 0)=g(x), \\ U_{x}(0, t)=U_{x}(L, t)=0 .\end{array}\right.$
show that $\int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x$ is conserved.
\checkmark Compute

$$
\begin{aligned}
& \begin{aligned}
& \frac{d}{d t} \int_{0}^{L}\left(u_{t}^{2}\right.\left.+c^{2} u_{x}^{2}\right) d x \stackrel{L}{=} \int_{0}^{L}\left(\frac{\partial}{\partial t}\left(u_{t}^{2}\right)+c^{2} \frac{\partial}{\partial t}\left(u_{x}^{2}\right)\right) d x \\
&=2 \int_{0}^{L}\left(u_{t} u_{t t}+c^{2} u_{x} u_{x t}\right) d x \\
& \text { chain vale marks] } \\
&=2 \int_{0}^{L} u_{t} u_{t t} d x+\left.2 u_{t} u_{x}\right|_{0} ^{L}-2 c^{2} \int_{0}^{L} u_{x x} u_{t} d x
\end{aligned}
\end{aligned}
$$

integratingloy pouts
[2 marks]
in the second term

$$
\begin{aligned}
& \text { cold term } \\
& =\left.2 u_{t} u_{x}\right|_{0} ^{L}+\int_{0}^{L} u_{t}\left(U_{t t}-c^{2} U_{x x}\right) d x \\
& =2\left(U_{t}(L, t) u_{x}\left(L_{1}, t\right)-U_{t}(0, t) U_{x}\left(L_{1}, t\right)\right) \\
& \text { BC's. } \quad[2 \text { marks] } \quad
\end{aligned}
$$

$=0$. [similar to ow, lectures, patly unseen
e) Consider the boundary ponds.

$$
U(0, t)=a, \quad U(L, t)=b .
$$

\longrightarrow The same computation as before Lads to

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}\right) d x=\left.2 u_{x} u_{t}\right|_{0} ^{L}=0 \\
& u(0, t)=a, u\left(L_{1}, t\right)=b \Rightarrow u_{t}(0, t)=u_{t}(L, t)=0 . \\
& {[3 \text { marks }]} \\
& {[\text { unseen }]}
\end{aligned}
$$

Question 3.
a) Explain the difference between

$$
\begin{aligned}
& \left(*_{1}\right) U(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(x) d s \\
& \left(*_{2}\right) U(x, t)=F(x-c t)+G(x+c t) .
\end{aligned}
$$

Q Formula $\left(*_{1}\right)$ is DiClembert's formula, thu unique sols to the initial value problem for the wave equ. on the real line with wounds

$$
U(x, 0)=f(x), \quad U_{+}(x, 0)=g(x), x \in \mathbb{R} .
$$

\checkmark Formula $\left(*_{2}\right)$ is the general som. to the wave equ written in terms of two curb. functs. of a single variable.
[3 moulds] [Boolework, partly unseen]
b) Show that $u(x, t)=\int_{x-c t}^{x+c t} g(s) d s$ is a solution to the wave equ.
$\leadsto u(x, t)=\int_{0}^{x+c t} g(s) d s+\int_{x-c t}^{0} g(s) d s=\int_{0}^{x+c t} g(s) d s-\int_{0}^{x-c t} g(s) d s$
Thus
[2 marks]

$$
\begin{aligned}
& U_{x}(x, t) \stackrel{\swarrow}{=} g(x+c t)-g(0)-g(x-c t)+g(0) \\
& U_{x x}(x, t) \stackrel{\swarrow}{=} g^{\prime}(x+c t)-g^{\prime}(x-c t)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& U_{+}(x, t)=c g(x+c t)-c g(0)+c g(x-c t)-c g(0) \\
& u_{t t}(x, t)=c^{2} g^{\prime}(x+c t)-c^{2} g^{\prime}(x-c t) . \quad[2 \text { marks }]
\end{aligned}
$$

Head, substituting:

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =c^{2} g^{\prime}(x+c t)-c^{2} g^{\prime}(x,-p t)-c^{2} g^{\prime}(x+c t)+c^{2} g^{\prime}(x-(t) \\
& =0
\end{aligned}
$$

[Portly unseen].
d) Given a solution $U(x, t)$ to

$$
u_{t t}-c^{2} u_{x x}=0
$$

show that $V(x, t) \equiv M(x+\alpha, t+\beta)$ is also a solution.
\checkmark Use the chain rule. Let $v=x+\alpha, w=t+\beta$.
Thus $V(x, t)=U(v, w)$. Om thus gets

$$
\left\{\begin{array} { l }
{ v _ { x } = u _ { v } } \\
{ v _ { x x } = u _ { v v } }
\end{array} \quad \left\{\begin{array}{l}
v_{t}=u_{w} \\
v_{t t}=u_{w w}
\end{array} \quad[2 \text { marks }]\right.\right.
$$

Thus, $V_{t t}-c^{2} V_{x x}=\underbrace{u_{r v}(v, w)}_{\text {wave equ }} \varepsilon^{2} U_{w w}=0$. [1 mark]
17) Interpretation: the equ. is invariant under time and space translations. [1 mark]
[Similar to cw/ Ucteres]
d) Find the solution to the problem

$$
\left\{\begin{array}{l}
U_{t t}-c^{2} U_{x x}=0, x \in \mathbb{R} \\
U(x, 0)=0, \\
U_{t}(x, 0)=\frac{1}{1+x^{2}}
\end{array}\right.
$$

Provich a sketch of the solution.
\rightarrow Use D'alembert's formula. In this case

$$
f(x)=0, \quad g(x)=\frac{1}{1+x^{2}}
$$

Recall that (appendix): $\int \frac{d x}{1+x^{2}}=\arctan x$.

$$
\Rightarrow U(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} \frac{d s}{1+\delta^{2}}=\frac{1}{2 c}(\arctan (x+c t)-\arctan (x-c t)) .
$$

\square Observe that $u(x, 0)=0$. $\quad[2$ marks]
\rightarrow Sketch:

$\arctan (x+c t) \sim$ shifted to the eft for $t>0$. $\arctan (x-c t) \sim$ shifted to the right for $t>0$.
\triangle Superimposing:

$t \gg 0$.

[similar to cw/luctures, partly unseen].

Question 4. Consider the problem:

$$
\begin{aligned}
& \Delta u=0, \quad(r, \theta) \in \Omega=\{a \leqslant r \leqslant b, \quad \theta \in[0,2 \pi)\}, \\
& u(a, \theta)=f(\theta), u(b, \theta)=g(\theta) .
\end{aligned}
$$

a) What does the principh of the maximum says if

$$
f(\theta)=1, \quad g(\theta)=2 .
$$

\rightarrow As a consequence of the principe of the maxi mum, the solution has maximum value $U(r, \theta)=2$ at $r=b$ and minimum value $U(r, \theta)=1$ at $r=a$.
[3 marks] [similar to aw/ lectures?
b) What happens if $f(\theta)=g(\theta)=1$.
\checkmark In this case the solution has the same constant value throughout the boundary. Thus, the solution is constant with value 1 on the whole of the annular ugion.
[3 marks] [similar to aw/lectures].
c) Let $U(r, \theta)=R(r) \theta(\theta)$. Find the solutions satisfied by R and θ.

$$
\begin{aligned}
& G \Delta U=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} \quad \text { (appendix) } \\
& \Rightarrow R^{\prime \prime} \theta+\frac{1}{r} R^{\prime} \theta+\frac{1}{r^{2}} R \theta^{\prime \prime}=0
\end{aligned}
$$

Multiplying by $\frac{r^{2}}{R \theta}: \quad \frac{r^{2} R^{\prime \prime}}{R}+\frac{r R^{\prime}}{R}+\frac{\theta^{\prime \prime}}{\theta}=0$

$$
\Rightarrow \underbrace{\frac{r^{2} R^{\prime \prime}}{R}+\frac{r R^{\prime}}{R}}=\underbrace{-\frac{\theta^{\prime \prime}}{\theta}}=k^{k} \text { separation constant. } \begin{gathered}
\text { marks] }
\end{gathered}
$$

depencls only cupends only on θ.
on r

$$
\therefore \begin{cases}r^{2} R^{\prime \prime}+r R^{\prime}-k R=0, & \left(*_{1}\right) \\ \theta^{\prime \prime}+k \theta=0, & \left(*_{2}\right) . \quad \text { [2menks] }\end{cases}
$$

[similar to lectures].
d) Periodic solutions?

The eqn $\left(*_{2}\right)$ has periodic solutions if $k \geqslant 0$. In this case

$$
=c_{1} \cos (\sqrt{k} \theta)+c_{2} \sin (\sqrt{k} \theta) \quad k \neq 0
$$

e) $k=0$.

$$
\theta=c_{1} \theta+c_{2} \quad k=0 \quad[2 \text { marks }]
$$

[marks]
f) Find the solus to $\left(*_{1}\right)$ and $\left(*_{2}\right)$ if $k=0$.

If $k=0$ then $\begin{cases}r^{2} R^{\prime \prime}+r R^{\prime}=0 & \left(*_{1}^{\prime}\right) \\ \theta^{\prime \prime}=0 & \left(*_{2}^{\prime}\right) .\end{cases}$
The only periodic solution to $\left(*_{2}^{\prime}\right)$ is $\theta(\theta)=$ constant

$$
\text { (w. log. } \operatorname{set} \theta(\theta)=1) \text {. }
$$

\longrightarrow If $r \neq 0$ then $\left(*_{1}^{\prime}\right)$ yields $r R^{\prime \prime}=-R^{\prime}$. [2 marks]

$$
\Rightarrow \quad \frac{r d R^{\prime}}{d r}=-R^{\prime} \leadsto \int \frac{d R^{\prime}}{R^{\prime}}=-\int \frac{d r}{r}+C_{1}
$$

$\Rightarrow \ln R^{\prime}=-\ln r+\ln C_{1} \sim$ redefining C_{1}.

$$
\therefore R^{\prime}=\frac{C_{l}}{r} .
$$

Integrating one last time:

$$
R(r)=C_{1} \ln r+C_{2}, C_{1}, G_{2} \in \mathbb{R} \text { [Branks] }
$$

[similar to CW/leotures].
g) Use the above to solve

$$
\begin{aligned}
& \Delta U=0, \quad(r, \theta) \in \Omega=\{a \leqslant v \leqslant b, \theta \in[0,2 \pi)\} \\
& u(a, \theta)=1, u(b, \theta)=2 .
\end{aligned}
$$

From the above the solution which is constant at the bound any is

$$
\begin{aligned}
U(r, \theta) & =\theta(\theta) R(r) \\
& =C_{1} \ln r+C_{2} .
\end{aligned} \quad[2 \text { marks }]
$$

2) Fix C_{1} and C_{2} via boundary cones:

$$
\left\{\begin{array}{l}
U(a, \theta)=C_{1} \ln a+c_{2}=1 \\
U\left(b_{1} \theta\right)=c_{2} \ln b+C_{2}=2
\end{array}\right.
$$

Solving the linear system one gets:

$$
\begin{aligned}
& C_{1}=\frac{1}{\ln a-\ln b}=\frac{1}{\ln a / b} \\
& C_{2}=\frac{2 \ln a-\ln b}{\ln a-\ln b}=\frac{\ln a^{2} / b}{\ln a / b} \quad[3 \text { marks] }
\end{aligned}
$$

[Partially unseen].

Hence,

$$
U(r, \theta)=\frac{1}{\ln a / b} \ln r+\frac{\ln a^{2} / b}{\ln a / b} .
$$

(h) Uniqueness.
\checkmark Let U_{1} and U_{2} be solutions w th the same boundary gonds. Mouover, let $V \equiv U_{2}-U_{1}$. By linearity one has

$$
\Delta u=0 \text { with } u_{\partial Q}=0 \text {. }
$$

Now, the solution is constant on $\partial \Omega$, so that U is constant throughout Ω. Hence $v=0$ on Ω and $U_{1}=U_{2}$ on Ω
[4 marks]
[Similar to lectures].

Question 5
(a) Given $\left\{\begin{array}{l}X^{\prime \prime}(x)=k X(x) \\ X(-a)=X(a), \quad X^{\prime}(-a)=X^{\prime}(a)\end{array}\right.$ show that $k<0$.
\longrightarrow Starting from $X^{\prime \prime}(x)=k X(x)$ multiply by $X(x)$ and integrate over $[-a, a]$:

$$
\int_{-a}^{a} x x^{\prime \prime} d x=k \int_{-a}^{a} x^{2} d x
$$

[2 marks]

Now using integration bay parts on the left hand side:

$$
\begin{aligned}
& \left.X X^{\prime}\right|_{-a} ^{a}-\int x^{\prime 2} d x=k \int_{-a}^{a} x^{2} d x \\
\Rightarrow & X(a) x^{\prime}(a)-X(-a) X^{1}(-a)-\int x^{\prime 2} d x=k \int_{-a}^{a} x^{2} d x \\
\therefore & -\underbrace{\int_{-a}^{a} x^{12} d x=}_{k \geqslant 0} \underbrace{\int_{-a}^{a} x^{2} d x}_{k \geqslant 0} \quad[3 \text { marks }] . \\
\therefore & k<0
\end{aligned}
$$

[Similar to ow / Lectures]
b) Why is the original problem for the heat equ? One has periodic boundary conditions. Thus,

$$
\left\{\begin{array}{l}
U_{t}=x U_{x x} \quad x \in[-a, a] \\
U_{(-a, 0)}=U_{(a, 0)} \quad[8 \text { mark }] \\
U_{x}(-a, 0)=U_{x}(a, 0) . \quad[\text { Unseen in this form }]
\end{array}\right.
$$

[Unseen in this form].
(c) Use the Fouvier-Poisson formula

$$
U(x, t)=\int_{-\infty}^{\infty} \frac{e^{-\frac{(x-y)^{2}}{4 x t}}}{\sqrt{4 x \pi t}} f(y) d y
$$

to compute the solution to

$$
\left\{\begin{array}{l}
U_{t}=x U_{x x}, \quad x \in \mathbb{R}, \quad t>0 \\
U(x, 0)=1
\end{array}\right.
$$

Provide an inter pretation.
G) Substitution of the initial condition on the Fourier formula gives

$$
\begin{aligned}
& \text { gives } \\
& \begin{aligned}
& U(x, t)=\int_{-\infty}^{\infty} \frac{e^{-\frac{(x-y)^{2}}{4 x t}} d y}{\sqrt{4 x+t t}} d 2 \text { marks] } \\
&=\frac{1}{44 x+t t} \int_{-\infty}^{\infty} e^{-s^{2}} \sqrt{4 x t} d s=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-s^{2}} d s=\frac{\sqrt{\pi}}{\sqrt{\pi}} \\
& {[3 \text { marks }} \\
& d s=(y-x) / \sqrt{4 x t}
\end{aligned}
\end{aligned}
$$

\rightarrow One has an initial constant distribution of temp perature. Thus, it must remain constant! [similar to ow /lectures].
d) The bump will flatten as $t \rightarrow \infty$.

[3 marks]
\rightarrow As the temperature is kept at the fixed value of 1 at the extremes, it thuefore cannot go below 1. Thus, one expects that $U(x, t) \longrightarrow$ as $t \rightarrow \infty$. [2 marks] [Similar to ow/ lectures].

