
Main Examination period 2023 – January – Semester A

MTH6151: Main Exam Solutions

Comments on questions:
(1) Question 1 (a),(d) are test of concepts understanding based on the lectures. (b) is
similar to questions in weekly problem sets, (c) is solving PDE based on ODE methods,
if the student’s figure out which method to use they should be able to solve.
(2) Question 2 (a) is similar to questions in the weekly problems. 2(b) is a new format
asking students to judge true or false, testing about scaling properties of various PDEs.
(3) Question 3(a) is students’ ability to apply maximum principle. 3(b) is a variation of
a coursework problem.
(4) Question 4(a) is new, for good students that know how to apply the right formulas
and theorems for Laplace equations to the domain of an annulus.
(5) Question 5(a) is similar to questions in previous exams. 5(b) is an application of
maximum principle for heat equation 5(c) is similar to previous exams 5(d) is test of
concepts understanding.

Question 1 [29 marks].

(a) For each of the following equations, write down the order of the equation,
determine whether each of them is linear or non-linear, and say whether they are
homogeneous or inhomogeneous.

(1) eyUxxy + exUyyx + x4U = 0.

(2) U2 ·∆U + ∆(Ux) + 3Uy = 2023. [6]

Solution:

(1) This is a 3rd order, linear homogeneous equation. 3 marks

(2) This is a 3rd order, non-linear, inhomogeneous equation. 3 marks

One mark for each of the judgement on order, linearity and homogeneity

(b) Consider the equation Ux + tUt = −1.

(1) Find the characteristics of this equation.

(2) Find the general solutions to this equation.

(3) Solve the following boundary value problem for this equation{
Ux + tUt = −1

U(0, t) = t.

[10]

Solution:

(1) The characteristics are given by solutions to the ODE ∂t
∂x

= t. i.e. t = Cex. (2
marks)
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(2) Along the characteristics, the equation becomes

d

dx
U = −1

U(x, t(x)) = −x+ f(C).

Using C = te−x, we have the general solutions

U(x, t) = −x+ f(te−x).

(4 marks)

(3) When x = 0, we have t = C and thus

C = t = U(0, t) = −0 + f(C).

So f(C) = C and the solution to the boundary value problem is

U(x, t) = −x+ te−x.

(4 marks)

(c) Find the general solutions U(x, t) to the equation

Ut + Uxt = 0

[8]

Solution:

Integrate both sides with respect to t (2 marks), we get

U + Ux = f̃(x).

(2 marks)

Using integrating factor ex we get

exU + exUx = exf̃(x)

∂

∂x
(exU) = f(x)

exU(x, t) = F (x) + g(t)

U(x, t) = F̃ (x) + e−xg(t),

for arbitrary F̃ and g. (4 marks)

2 marks each for obtaining the terms F̃ (x) and e−xg(t)

(d) Describe the meaning of domain of dependence and domain of influence, and then
interpret how the solutions of wave equations are influenced by the initial
condition using D’Alembert’s formula. [5]

Solution:

For any (x, t), x ∈ R, t ≥ 0, the domain of dependence is
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t

x

(x,t)

x+ctx-ct

domain of 
dependence

and the domain of influence is

t

x

(x,t)

domain of 
influence

(2 marks)

This tells that the information can only travel with a finite speed c. (1 mark)

D’Alembert’s formula tells that the initial data influence the solutions of wave
equation in the following manner.

U(x, t) =
(
average of U(x, 0) on x− ct and x+ ct

)
+
(
average of Ut(x, 0) over the interval [x− ct, x+ ct]

)
.

(2 marks)

Question 2 [19 marks].

(a) Write down the principal part of the equation −U + Ux − Uy − Uxy + Uyy = 2x,
and then determine the type (elliptic, parabolic or hyperbolic) of this equation. [3]
Solution:

The principal part is −Uxy + Uyy.

With a = 0, b = 1
2
, c = 1, we have b2 − ac = 1

4
> 0. So the equation is hyperbolic.

(3 marks)
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(b) Decide whether the following statements are true or false. (You don’t need to
explain your answer)

(1) If U(x, t) is a solution to the wave equation Utt − c2Uxx = 0, then
V (x, t) = U(2x,−2t) is also a solution to the same wave equation.

(2) If U(x, y) is a harmonic function, then V (x, y) = [U(x, y)]3 is also harmonic.

(3) If U(x, t) is a solution to the heat equation Ut − κUxx = 0, then
V (x, t) = U(x,−t) is also a solution to the same heat equation.

(4) If U(x, t) is a solution to the heat equation Ut − κUxx = 0 and f is a
compactly supported differentiable function defined on R, then the function
V (x, t) defined by the convolution V (x, t) =

∫∞
−∞ Ut(x− y, t)f(y)dy is also a

solution to the same heat equation. (Here Ut is the partial derivative of U with
respect to t.) [8]Solution:

(1) True

(2) False

(3) False

(4) True

(8 marks) 2 marks for each judgement

(c) Consider the eigenvalue problem{
X ′′ = −λX, x ∈ [0, 3]

X(0) = 0, X(3) = 0.

(1) Show that the eigenvalues λ are all positive.

(2) Compute all the eigenvalues. [8]

Solution:

(1) Multiply both sides of the equation by X and integrate from 0 to 3 we get∫ 3

0

X(x)X ′′(x)dx =

∫ 3

0

−λX2(x)dx.

Using integration by parts, we have

X(x)X ′(x)|30 −
∫ 3

0

(X ′(x))2dx = −λ
∫ 3

0

X2(x)dx

−
∫ 3

0

(X ′(x))2dx = −λ
∫ 3

0

X2(x)dx

where we used the boundary conditions. Now for any X not constantly zero, we
have

∫ 3

0
(X ′(x))2dx > 0 and

∫ 3

0
X2(x)dx > 0. So we conclude that λ > 0.

(4 marks)
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(2) By the theory for 2nd order linear ODEs and the fact that λ is positive, the
characteristic polynomial is x2 + λ = 0 has 2 complex roots −i

√
λ and o

√
λ. So

the general solutions are

X(x) = C1 cos(
√
λx) + C2 sin(

√
λx).

The first boundary condition X(0) = 0 implies 0 = X(0) = C1 + 0. So C1 = 0 and
thus C2 6= 0.

The second boundary condition X(3) = 0 then implies
0 = X(3) = 0 + C2 sin(3

√
λ). So 3

√
λ = nπ for n = 1, 2, . . . and thus the

eigenvalues are

λn =
n2π2

9
.

(4 marks)

Question 3 [16 marks].

(a) Solve the following inhomogeneous wave equation on the real line{
Utt − c2Uxx = 2x− sinx

U(x, 0) = cos2 x, Ut(x, 0) = 1.

[8]

Solution: Using Duhamel’s principle, the solutions for the inhomogeneous wave
equation on the real line is

U(x, t) =
1

2
[cos2(x+ ct) + cos2(x− ct)] +

1

2c

∫ x+ct

x−ct
1ds+

1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
(2r − sin r)drds

=
1

2
[
1− cos(2(x+ ct))

2
+

1− cos(2(x− ct))
2

] +
2ct

2c

+
1

2c

∫ t

0

[r2 + cos r]|x+c(t−s)x−c(t−s)ds(4marks)

=
1

2
+

cos(2(x+ ct)) + cos(2(x− ct))
4

+ t

+
1

2c

∫ t

0

[4cx(t− s) + cos(x+ ct− cs)− cos(x− ct+ cs)]ds

=
1

2
+

cos(2(x+ ct)) + cos(2(x− ct))
4

+ t+ xt2

− sinx

c2
+

sin(x+ ct) + sin(x− ct)
2c2

.(4marks)
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(b) (1) Suppose U(x, t) is compactly supported for all time and is a solution to the
hyperbolic equation

Utt − 4Uxx + 2Ut = 0, x ∈ R.

Show that the energy E[U ](t) = 1
2

∫∞
−∞(U2

t + 4U2
x)dx is non-increasing in time.

(2) Use the above fact about energy non-increasing in time to show that if the
solution to the following initial value problem exists then it must be unique.{

Utt − 4Uxx + 2Ut = ψ(x), x ∈ R
U(x, 0) = f(x), Ut(x, 0) = g(x).

[8]

Solution:

(1) We compute

d

dt
E[U ](t) =

d

dt

1

2

∫ ∞
−∞

(U2
t + 4U2

x)dx

=
1

2

∫ ∞
−∞

d

dt
[U2

t + 4U2
x ]dx

=
1

2

∫ ∞
−∞

[2UtUtt + 8UxUtx]dx

=

∫ ∞
−∞

UtUttdx+ 4

∫ ∞
−∞

UxUtxdx

=

∫ ∞
−∞

UtUttdx+ 4UxUt|∞−∞ − 4

∫ ∞
−∞

UxxUtdx

=

∫ ∞
−∞

UtUttdx+ 0− 4

∫ ∞
−∞

UxxUtdx

=4

∫ ∞
−∞

Ut(Utt − 4Uxx)dx

=4

∫ ∞
−∞
−2U2

t dx

≤0,

where we used the integration by parts in the fifth line and the compactness of
support in the sixth line.

So the energy is non-increasing. (4 marks)

(2) Suppose U1 and U2 are 2 solutions to this initial value inhomogeneous
problem. Then by the principle of superposition, we know that U = U1 − U2 is a
solution to the homogeneous equation with zero initial value, i.e.{

Utt − 4Uxx + 2Ut = 0, x ∈ R
U(x, 0) = 0, Ut(x, 0) = 0.
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By the zero initial value, we see that E[U ](0) = 0. Because E[U ](t) ≥ 0 and is
non-increasing, we know that E[U ](t) ≡ 0 for all t, this forces U(x, t) ≡ 0 and
thus U1 = U2.

(4 marks)

Question 4 [16 marks].

(a) (1) Find the solution U(r, θ) to the Laplace equation in the annulus 1 ≤ r ≤ 2
with the boundary conditions{

U(1, θ) = 3 cos θ − 1

U(2, θ) = 3 cos θ − 1.

(2) Show that the solution U obtained above satisfies U ≤ 2 and U ≥ −4 in the
whole annulus. [11]

Solution:

(1) The general solutions for Laplace equation in polar coordinate is

U(r, θ) =

(
C0 +D0 ln r

)
+
∞∑
m=1

(
Cmr

m +
Dm

rm

)
(Am cosmθ +Bm sinmθ).

(3 marks) By the boundary conditions, we see that Cm, Dm, Bm = 0 for all m ≥ 2,
and

C0 +D0 ln 1 + (C1 +D1)A1 cos θ = 3 cos θ − 1

C0 +D0 ln 2 + (2C1 +
D1

2
)A1 cos θ = 3 cos θ − 1.

(3 marks) By observation one can choose
C0 = −1, D0 = 0, C1 = 1, D1 = 2, A1 = 1. So plugging into the general solutions,
we get the solution to the boundary value problem is

U(r, θ) = −1 + (r +
2

r
) cos θ.

(2 marks)

(2) Using that −1 ≤ cos θ ≤ 1, we have −4 ≤ U(1, θ) ≤ 2 and −4 ≤ U(2, θ) ≤ 2
on the 2 boundaries of the annulus. So by maximum principle, we conclude that
2 ≤ U ≤ 4 in the whole annulus. (3 marks)

(b) Suppose that U is a harmonic function in the disk Ω = {r < 3} and that

U(3, θ) = sin θ + cos 2θ.

Without finding the solution, compute the value of U at the origin – that is, at
r = 0. [5]
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Solution:
By the first mean value theorem (2 marks), the value at the origin should be equal to
the average on the circle of radius 3, which is equal to
1
2π

∫ 2π

0
U(3, θ)dθ = 1

2π

∫ 2π

0
(sin θ + cos 2θ)dθ = 0. (3 marks)

Question 5 [20 marks].

(a) Determine all possible values of a, b, c so that U(x, t) = ax+ bx2 + ct is a solution
to the heat equation Ut − κUxx = 0. [6]

Solutions:

The equation

Ut − κUxx = 0.

implies

c− 2bκ = 0.

So a can be any real number. (2 marks) And b, c satisfies c = 2bκ. (4 marks)

(b) Consider the following initial and boundary value problem to the heat equation

Ut − κUxx = 0,−2π ≤ x ≤ 2π, t > 0

U(−2π, 0) = 1, U(2π, 0) = 3

U(x, 0) =


2 + cos x, π ≤ x ≤ 2π

1, −π < x < π

1− sinx, −2π ≤ x ≤ −π.

Without solving the equation, show that U(x, t) ≥ 0 and U(x, t) ≤ 3 for all
x ∈ R, 0 < t < 1. [5]

Solutions: Using that −1 ≤ cosx, sinx ≤ 1, we have that 2 + cosx ∈ [1, 3] and
1− sinx ∈ [0, 2]. (2 marks) So we get 0 ≤ U ≤ 3 on the boundary of
Ω = {−2π ≤ x ≤ 2π, 0 < t < 1}. By the maximum principle, we conclude that
U ≥ 0 and U ≤ 3 on the whole Ω. (3 marks)

(c) Describe in qualitative terms the behaviour of the solution to the heat equation
on an interval

Ut = κUxx, x ∈ [0, 2π],

with initial data
U(x, 0) = f(x)

where f(x) has the form
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x

and

U(0, t) = U(2π, t) = 1.

What do you expect to be the limit of U(x, t) as t→∞? No proof or calculations
are required. You may draw a plot of the solution at various instants of time to
explain your answer. [5]

Solution: The limit behavior of U is that it’s becoming flatter and flatterA
sketch is as below:

(3 marks)

As time go to infinity, the value of U tend to 1. (2 marks)

(d) Describe in words (with a maximum 4 sentenses) the procedure of solving heat
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equations on the half-line with Dirichlet boundary conditions.

Ut = κUxx, x ≥ 0, t > 0

U(x, 0) = f(x)

U(0, t) = 0.

[4]

Solution:

Step 1: Do an odd extension of f to the whole real line and get F .(1 mark)

Step 2: Solve the initial value problem on the real line

Vt = κVxx, x ∈ R, t > 0

V (x, 0) = F (x)

using Fourier-Poisson formula.(2 marks)

Step 3: The restriction of V on the half line is the solution U of the heat equation
on half-line with Dirichlet condition. (1 mark)

End of Paper.

© Queen Mary University of London (2023)


