Main Examination period 2023 - January - Semester A

MTH6151 / MTH6151P: Partial Differential Equations

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: S. Wang, O. Jenkinson

Question 1 [29 marks].

(a) For each of the following equations, write down the order of the equation, determine whether each of them is linear or non-linear, and say whether they are homogeneous or inhomogeneous.
(1) $e^{y} U_{x x y}+e^{x} U_{y y x}+x^{4} U=0$.
(2) $U^{2} \cdot \Delta U+\Delta\left(U_{x}\right)+3 U_{y}=2023$.
(b) Consider the equation $U_{x}+t U_{t}=-1$.
(1) Find the characteristics of this equation.
(2) Find the general solutions to this equation.
(3) Solve the following boundary value problem for this equation

$$
\left\{\begin{array}{l}
U_{x}+t U_{t}=-U+1 \\
U(0, t)=t
\end{array}\right.
$$

(c) Find the general solutions $U(x, t)$ to the equation

$$
U_{t}+U_{x t}=0 .
$$

(d) Describe the meaning of domain of dependence and domain of influence, and then interpret how the solutions of wave equations are influenced by the initial condition using D'Alembert's formula.

Question 2 [19 marks].

(a) Write down the principal part of the equation $-U+U_{x}-U_{y}-U_{x y}+U_{y y}=2 x$, and then determine the type (elliptic, parabolic or hyperbolic) of this equation.
(b) Decide whether the following statements are true or false. (You don't need to explain your answer)
(1) If $U(x, t)$ is a solution to the wave equation $U_{t t}-c^{2} U_{x x}=0$, then $V(x, t)=U(2 x,-2 t)$ is also a solution to the same wave equation.
(2) If $U(x, y)$ is a harmonic function, then $V(x, y)=[U(x, y)]^{3}$ is also harmonic.
(3) If $U(x, t)$ is a solution to the heat equation $U_{t}-\varkappa U_{x x}=0$, then $V(x, t)=U(x,-t)$ is also a solution to the same heat equation.
(4) If $U(x, t)$ is a solution to the heat equation $U_{t}-\varkappa U_{x x}=0$ and f is a compactly supported differentiable function defined on \mathbb{R}, then the function $V(x, t)$ defined by the convolution $V(x, t)=\int_{-\infty}^{\infty} U_{t}(x-y, t) f(y) d y$ is also a solution to the same heat equation. (Here U_{t} is the partial derivative of U with respect to t.)
(c) Consider the eigenvalue problem

$$
\left\{\begin{array}{l}
X^{\prime \prime}=-\lambda X, x \in[0,3] \\
X(0)=0, X(3)=0 .
\end{array}\right.
$$

(1) Show that the eigenvalues λ are all positive.
(2) Compute all the eigenvalues.

Question 3 [16 marks].

(a) Solve the following inhomogeneous wave equation on the real line

$$
\left\{\begin{array}{l}
U_{t t}-c^{2} U_{x x}=2 x-\sin x \\
U(x, 0)=\cos ^{2} x, U_{t}(x, 0)=1
\end{array}\right.
$$

(b) (1) Suppose $U(x, t)$ is compactly supported for all time and is a solution to the hyperbolic equation

$$
U_{t t}-4 U_{x x}+2 U_{t}=0, x \in \mathbb{R}
$$

Show that the energy $E[U](t)=\frac{1}{2} \int_{-\infty}^{\infty}\left(U_{t}^{2}+4 U_{x}^{2}\right) d x$ is non-increasing in time.
(2) Use the above fact about energy non-increasing in time to show that if the solution to the following initial value problem exists then it must be unique.

$$
\left\{\begin{array}{l}
U_{t t}-4 U_{x x}+2 U_{t}=\psi(x), x \in \mathbb{R} \\
U(x, 0)=f(x), U_{t}(x, 0)=g(x)
\end{array}\right.
$$

Question 4 [16 marks].

(a) (1) Find the solution $U(r, \theta)$ to the Laplace equation in the annulus $1 \leq r \leq 2$ with the boundary conditions

$$
\left\{\begin{array}{l}
U(1, \theta)=3 \cos \theta-1 \\
U(2, \theta)=3 \cos \theta-1
\end{array}\right.
$$

(2) Show that the solution U obtained above satisfies $U \leq 2$ and $U \geq-4$ in the whole annulus.
(b) Suppose that U is a harmonic function in the disk $\Omega=\{r<3\}$ and that

$$
U(3, \theta)=\sin \theta+\cos 2 \theta .
$$

Without finding the solution, compute the value of U at the origin - that is, at $r=0$.

Question 5 [20 marks].

(a) Determine all possible values of a, b, c so that $U(x, t)=a x+b x^{2}+c t$ is a solution to the heat equation $U_{t}-\varkappa U_{x x}=0$.
(b) Consider the following initial and boundary value problem to the heat equation

$$
\begin{aligned}
& U_{t}-\varkappa U_{x x}=0,-2 \pi \leq x \leq 2 \pi, t>0 \\
& U(-2 \pi, 0)=1, U(2 \pi, 0)=3 \\
& U(x, 0)=\left\{\begin{array}{l}
2+\cos x, \pi \leq x \leq 2 \pi \\
1,-\pi<x<\pi \\
1-\sin x,-2 \pi \leq x \leq-\pi
\end{array}\right.
\end{aligned}
$$

Without solving the equation, show that $U(x, t) \geq 0$ and $U(x, t) \leq 3$ for all $x \in \mathbb{R}, 0<t<1$.
(c) Describe in qualitative terms the behaviour of the solution to the heat equation on an interval

$$
U_{t}=\varkappa U_{x x}, \quad x \in[0,2 \pi],
$$

with initial data

$$
U(x, 0)=f(x)
$$

where $f(x)$ has the form

and

$$
U(0, t)=U(2 \pi, t)=1
$$

What do you expect to be the limit of $U(x, t)$ as $t \rightarrow \infty$? No proof or calculations are required. You may draw a plot of the solution at various instants of time to explain your answer.
(d) Describe in words (with a maximum 4 sentences) the procedure of solving heat equations on the half-line with Dirichlet boundary conditions:

$$
\begin{aligned}
& U_{t}=\varkappa U_{x x}, x \geq 0, t>0 \\
& U(x, 0)=f(x) \\
& U(0, t)=0
\end{aligned}
$$

End of Paper.

