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Question 1 [29 marks].

(a) For each of the following equations, write down the order of the equation,
determine whether each of them is linear or non-linear, and say whether they are
homogeneous or inhomogeneous.

(1) eyUxxy + exUyyx + x4U = 0.

(2) U2 ·∆U + ∆(Ux) + 3Uy = 2023. [6]

(b) Consider the equation Ux + tUt = −1.

(1) Find the characteristics of this equation.

(2) Find the general solutions to this equation.

(3) Solve the following boundary value problem for this equation{
Ux + tUt = −U + 1

U(0, t) = t.

[10]

(c) Find the general solutions U(x, t) to the equation

Ut + Uxt = 0.

[8]

(d) Describe the meaning of domain of dependence and domain of influence, and then
interpret how the solutions of wave equations are influenced by the initial
condition using D’Alembert’s formula. [5]

© Queen Mary University of London (2023) Continue to next page



MTH6151 / MTH6151P (2023) Page 3

Question 2 [19 marks].

(a) Write down the principal part of the equation −U + Ux − Uy − Uxy + Uyy = 2x,
and then determine the type (elliptic, parabolic or hyperbolic) of this equation.

[3]

(b) Decide whether the following statements are true or false. (You don’t need to
explain your answer)

(1) If U(x, t) is a solution to the wave equation Utt − c2Uxx = 0, then
V (x, t) = U(2x,−2t) is also a solution to the same wave equation.

(2) If U(x, y) is a harmonic function, then V (x, y) = [U(x, y)]3 is also harmonic.

(3) If U(x, t) is a solution to the heat equation Ut − κUxx = 0, then
V (x, t) = U(x,−t) is also a solution to the same heat equation.

(4) If U(x, t) is a solution to the heat equation Ut−κUxx = 0 and f is a compactly
supported differentiable function defined on R, then the function V (x, t) defined
by the convolution V (x, t) =

∫∞
−∞ Ut(x− y, t)f(y)dy is also a solution to the same

heat equation. (Here Ut is the partial derivative of U with respect to t.) [8]

(c) Consider the eigenvalue problem{
X ′′ = −λX, x ∈ [0, 3]

X(0) = 0, X(3) = 0.

(1) Show that the eigenvalues λ are all positive.

(2) Compute all the eigenvalues. [8]
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Question 3 [16 marks].

(a) Solve the following inhomogeneous wave equation on the real line{
Utt − c2Uxx = 2x− sinx

U(x, 0) = cos2 x, Ut(x, 0) = 1.

[8]

(b) (1) Suppose U(x, t) is compactly supported for all time and is a solution to the
hyperbolic equation

Utt − 4Uxx + 2Ut = 0, x ∈ R.

Show that the energy E[U ](t) = 1
2

∫∞
−∞(U2

t + 4U2
x)dx is non-increasing in time.

(2) Use the above fact about energy non-increasing in time to show that if the
solution to the following initial value problem exists then it must be unique.{

Utt − 4Uxx + 2Ut = ψ(x), x ∈ R
U(x, 0) = f(x), Ut(x, 0) = g(x).

[8]

Question 4 [16 marks].

(a) (1) Find the solution U(r, θ) to the Laplace equation in the annulus 1 ≤ r ≤ 2
with the boundary conditions{

U(1, θ) = 3 cos θ − 1

U(2, θ) = 3 cos θ − 1.

(2) Show that the solution U obtained above satisfies U ≤ 2 and U ≥ −4 in the
whole annulus. [11]

(b) Suppose that U is a harmonic function in the disk Ω = {r < 3} and that

U(3, θ) = sin θ + cos 2θ.

Without finding the solution, compute the value of U at the origin – that is, at
r = 0. [5]
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Question 5 [20 marks].

(a) Determine all possible values of a, b, c so that U(x, t) = ax+ bx2 + ct is a solution
to the heat equation Ut − κUxx = 0. [6]

(b) Consider the following initial and boundary value problem to the heat equation

Ut − κUxx = 0,−2π ≤ x ≤ 2π, t > 0

U(−2π, 0) = 1, U(2π, 0) = 3

U(x, 0) =


2 + cos x, π ≤ x ≤ 2π

1, −π < x < π

1− sinx, −2π ≤ x ≤ −π.

Without solving the equation, show that U(x, t) ≥ 0 and U(x, t) ≤ 3 for all
x ∈ R, 0 < t < 1. [5]

(c) Describe in qualitative terms the behaviour of the solution to the heat equation
on an interval

Ut = κUxx, x ∈ [0, 2π],

with initial data
U(x, 0) = f(x)

where f(x) has the form

x

and
U(0, t) = U(2π, t) = 1.

What do you expect to be the limit of U(x, t) as t→∞? No proof or calculations
are required. You may draw a plot of the solution at various instants of time to
explain your answer. [5]

(d) Describe in words (with a maximum 4 sentences) the procedure of solving heat
equations on the half-line with Dirichlet boundary conditions:

Ut = κUxx, x ≥ 0, t > 0

U(x, 0) = f(x)

U(0, t) = 0.

[4]

End of Paper.
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