Selected solutions PS 9
1.

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t}-\Vdash^{<} \frac{\partial^{2}}{\partial x^{2}}\right] U\left(\partial x, \partial^{2} t\right) } \\
= & \frac{\partial}{\partial t}\left[U\left(\partial x, \partial^{2} t\right)\right]-飞 \frac{\partial^{2}}{\partial x^{2}}\left[U\left(\partial x, \partial^{2} t\right)\right] \\
= & \partial^{2} \cdot U_{t}\left(\partial x, \partial^{2} t\right)-k \cdot \partial^{2} U_{x x}\left(\partial x, \partial^{2} t\right) \\
= & \partial^{2} \cdot\left[U_{t}\left(\partial x, \partial^{2} t\right)-飞 U_{x x}\left(\partial x, \partial^{2} t\right)\right]
\end{aligned}
$$

$=\partial^{2} \cdot 0 \quad E$ using U satisfies heat equation

$$
=0
$$

$$
u_{t}-7 u_{x t}=0
$$

So $U\left(\partial x, \partial^{2} t\right)$ Satisfies Heat Equation,
on the other hand, $U\left(\partial x,-\partial^{2} t\right)$
does not satisfies the Heat Equations
4. We have deduced that the geverd solution are

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-\frac{\pi^{2} n^{2}}{L^{2}} k t} \sin \frac{n \pi x}{L} \quad \text { with } L=1
$$ in this question

$$
\text { Thus } u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-\pi^{2} n^{2} k t} \sin (n \pi x) \text {. }
$$

The initial condition gives $-6 \sin (6 \pi x)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x)$ using the orthoponolities of $\sin (n-2 x)$, we "observe" flat $a_{n}=0$ except for $n=6$

And $a_{6}=-6$. (the $a=6$ form need fo match)
so the solution to this Dirichlet problem is

$$
u(x, t)=-6 e^{-36 \pi^{2} k t} \sin (6 \pi x)
$$

5. Using separation of variables, suppree

$$
u(x, t)=x(x) T(t)
$$

plug into equation get

$$
\begin{aligned}
& X \dot{T}=F X^{\prime \prime} T \\
& \frac{\dot{T}}{F T}=\frac{X^{\prime \prime}}{X}=-\lambda \text { a constant. } \\
& \text { Weget } 2 \text { onES } \\
&\left\{\begin{array}{l}
X^{\prime \prime} \\
\dot{T}
\end{array}=-\lambda X\right. \\
&=-\lambda F T
\end{aligned}
$$

The list ODE and the bondang condition gives an eigenvalue problem.

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-\lambda x \\
x^{\prime}(0)=0, x^{\prime}(L)=0
\end{array}\right.
$$

Using integration by parts, we hove shown in problem set 5 Quection 2 the save eigenvalue puhlem that $\lambda \geqslant 0$
so $x(x)=A \cos \sqrt{\lambda} x+\beta \sin \sqrt{\lambda} x$
and $x^{\prime}(x)=-A \sqrt{\lambda} \sin \sqrt{\lambda} x+B \sqrt{\lambda} \cos \sqrt{\lambda} x$
The first bondoy condition gives

$$
0=X^{\prime}(0)=B \sqrt{\lambda} \text {, so } B=0 \text { and } A \neq 0
$$

the second border coalition gives

$$
0=X^{\prime}(L)=-A \sqrt{\lambda} \operatorname{Sin}(\sqrt{\lambda} \cdot L)
$$

we hove $\sqrt{\lambda} \cdot L=n \pi, \quad n=1,2, \cdots$
So the eigenvalues are $\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}$
The einenfunctions are

$$
X_{n}(x)=\cos \frac{n \pi x}{L}
$$

knowing λ_{n}, we solve $\dot{T}=-k \lambda_{n} T$ and get

$$
T n(t)=e^{-\frac{n^{2} \pi^{2}}{L^{2}} k t}
$$

For $n=0$, ice. $\lambda=0$, we get

$$
x^{\prime \prime}=0, \quad x(x)=a_{0}+b_{0} t
$$

the burday condition $x^{\prime}(0)=x^{\prime}(L)=0$ gives $b_{0}=0$
so $X_{0}(x)=$ canst, solving for $\bar{i}=0$ we get

$$
T_{0}(t)=\text { cone }
$$

The general solutions are

$$
\begin{aligned}
u(x, t) & =a_{0}+\sum_{n=1}^{\infty} a_{n} x_{n}(x) T n(t) \\
& =a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} k t} \cos \frac{n \pi x}{L}
\end{aligned}
$$

6.1) plug in $t=0$, we get

$$
\begin{equation*}
1=a_{0}+\sum_{n=1}^{\infty} \operatorname{arcos} \frac{n \pi x}{C} \tag{*}
\end{equation*}
$$

wing that $\int_{0}^{2} \cos \frac{n \pi y}{L} \cos \frac{\operatorname{m\pi x}}{L}= \begin{cases}0, n \neq m \\ \frac{L}{2}, n=m\end{cases}$
we hove (by multiply both sides by $\sin \frac{m \pi x}{L}$)

$$
\int_{0}^{L} \cos \frac{m \pi x}{L}=\sum_{n=1}^{\infty} a_{n} \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m a x}{L}=a_{m} \cdot \frac{L}{2}
$$

we get

$$
\begin{aligned}
a_{m} & =\frac{2}{L} \int_{0}^{L} \cos \frac{m \pi x}{L} \\
& =\left.\frac{2}{L} \frac{L}{m \pi}\left[\sin \frac{m \pi x}{L}\right]\right|_{0} ^{L} \\
& =\frac{2}{L} \frac{L}{m \pi}[0-0] \\
& =0 \quad \text { for } m \geqslant 1
\end{aligned}
$$

so the initial condition gives $1=a_{0}+\frac{n}{n=1} a_{n} \cos \frac{n \pi x}{L}=a_{0}$ The solution is

$$
u(x, t) \equiv 1
$$

(2) Notice $\cos ^{2}\left(\frac{\pi x}{L}\right)=\frac{\cos \frac{2 \pi x}{L}+1}{2}$

$$
\text { so } \frac{1}{2}+\frac{1}{2} \cos \frac{2 \lambda x}{L}=a_{0}+\sum_{n=1}^{a} a_{n} \cos \frac{n \pi y}{L}
$$

we can we the ortlogoonluty condition $(* *)$ and "observe" that

$$
a_{0}=\frac{1}{2}, a_{2}=\frac{1}{2}, a_{n}=0 \text { for } n \neq 0,2
$$

so plus into the general solutions obtained in 5 ard gel

$$
U(x, t)=\frac{1}{2}+\frac{1}{2} e^{-\frac{4 \pi^{2}}{L^{2}} k t} \cos \frac{2 \pi x}{L}
$$

