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Over the next two weeks we will cover
1

• Comparing mortality experience with standard tables

2
• Graduation and the reasons for it

3
• Desirable features of graduated rates

4
• Statistical tests of mortality experience

5
• Methods of graduation

6
• Statistical tests of a graduation
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Introduction to the topic
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from observations

The models we have considered (e.g. multi-state, Poisson, Binomial) 
give mortality for a single year of age [x, x+1]
◦ for practical work we generally need a life table covering a large age range

If our observations yield data for all ages x1, x2, …, xn then we can 
obtain:
◦ death and exposed-to-risk data

◦ crude estimates of the rate of mortality or force of mortality

◦ asymptotic distributions for Dₓ qₓ or µₓ
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model data, outputs and distributions
Poisson or multi-state Binomial type

Deaths dₓ Deaths dₓ

Exposed to risk Eₓ Initial Exposed to risk Eₓ ≈ Eₓ + ½dₓ

Crude estimate of hazard rate µx+½ Crude estimate of mortality rate qₓ

Asymptotically 
Dₓ ~ Normal (Exµx+½ , Exµx+½ ) 

Approximately 
Dₓ ~ Binomial (Ex , qx)

or
µx+½ ~ Normal (µx+½ , µx+½ / Ex )

With the further approximation
Dₓ ~ Normal [ Exqx , Exqx(1-qx) ]
or
qx ~ Normal  qx , qx(1-qx) 
                                  Ex
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comparison with standard tables
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standard tables
a life assurance company will want to 
compare its own mortality experience 
with:

1. past experience
◦ e.g. to assess premiums

2. published life tables also known as 
“standard tables”

◦ e.g. if considering those tables for 
financial reporting purposes

• from census data 
every 10 years

• e.g. English Life Tables

National 
Life 

Tables

• calculated by CMI in 
the UK

• e.g. “92 series”

Tables 
from Life 

Office 
data
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checking
Life assurance actuaries use standard tables a lot, so it is important to check the 
company’s own experience is consistent with the tables used

if qx and µx+½ are from standard tables 

and qx and µx+½ are from models with data taken from experience

we want to know whether the two are consistent, or more formally

we test the hypothesis using the [Normal] distribution assumptions for Dₓ already 
given, comparing death data dₓ with expected deaths given the standard table

8

Our hypothesis is that standard table values {qx} and {µx+½} are the “true” 
parameters of our model [multi-state / Poisson / Binomial] at each age x 
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Graduation
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what? q and µ

10

c
our model outputs  {qx} and {µx+½} will proceed roughly not smoothly with x
◦ because each value is estimated independently and therefore will contain its own 

sampling errors

we would prefer qx and µx+½ that are smooth functions of age

hence we graduate or smooth crude estimates qx and µx+½ to produce graduated 
estimates qx and µx+½ 
◦ There are various methods used to do this which we will cover next week

‸ ‸
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the reasons for graduation
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why?
1

there is intuitive appeal in a smooth function 
(although this is effectively an assumption)

2

smoothing can use data in adjacent ages to 
improve estimates

3

it may be a way of reducing sampling error at 
individual ages

4

hard to justify jumps when using q or µ in 
practical work

Note however, graduation 
cannot remove:

1. bias in the data

2. mistakes
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desirable features

1
• smoothness

2

• adherence to data or 
“goodness of fit”

3

• suitability for intended 
practical work
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features 1. and 2. are usually in 
conflict. The art of graduation 
lies in finding a satisfactory 
compromise

this depends on the nature of 
the work. In life assurance we 
must not underestimate 
mortality; for annuities we must 
not overestimate it



Statistical tests of 
mortality experience
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testing smoothness
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testing smoothness

16

cthe usual test for smoothness in mathematics is differentiability, but that is no 
good in this situation

in practice smoothness is usually easily obtained in 3 of the 4 graduation 
methods we will meet later

where we do wish to test, the most usual criteria is that the third difference of 
graduated quantities {qx} or {µx+½} should:

a) be small compared to the quantities themselves

b) progress regularly

°°



test set-up
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2 things we might test

18

c

comparing mortality 
experience to a 
standard table

testing adherence to 
data (or goodness of fit) 

of a graduation



set up
Hypothesis 

(if comparing experience to a   
standard table)

Two State or Poisson

Dₓ ~ Normal(Exµx+½ , Exµx+½)

Binomial

Dₓ ~ Binomial(Ex , qx)

Hypothesis 

(if testing adherence to data of a 
graduation)

Two State or Poisson

Dₓ ~ Normal(Exµx+½ , Exµx+½)

Binomial

Dₓ ~ Binomial(Ex , qx)

19
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deviation and standardised deviation
In multi-state and Poisson models:

deviation = actual deaths – expected deaths

        = dx - Exµx+½    or     dx - Exµx+½ 

standardised deviation is

   zx = dx - Exµx+½    or      zx = dx - Exµx+½ 

           √(Exµx+½)          √(Exµx+½)
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deviation and standardised deviation 2
In Binomial type models:

deviation = actual deaths – expected deaths

        = dx - Exqx    or     dx - Exqx 

standardised deviation is

   zx = dx - Exqx    or       zx = dx - Exqx 

           √(Exqx)       √(Exqx)
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large samples
if sufficient number of lives at all ages we can apply the Central Limit Theorem 
for both hypotheses and all 3 models giving

  zx ~ Normal (0,1)  x=x1, x2, …, xn

and the zx’s are mutually independent
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χ2 test
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χ2 test

24

clet

    X = ∑ zx
2 is the χ2 statistic

if we are comparing experience with a standard table, X can be assumed to    
have a χ2 distribution on m degrees of freedom (m being the number of age 
groups x=x1, x2, …, xm) 

Large X suggests excessive deviations from the standard table so we test X 
against the upper 5% point of χ2  and the hypothesis fails if X > χ2

all ages

m m:0.95



χ2 continued

25

cif we are testing adherence to data of a graduation, X can be assumed to have     
a χ2 distribution on <m degrees of freedom

how many fewer than m d-of-f depends on the method of graduation used

we will return to this question next week



The χ2 test fails to detect some defects

• a few large deviations offset by many smaller deviations1
• cases where the test is satisfied even though the data does not satisfy 

the assumptions that underpin χ2  2

• small biases may remain left undetected3
• “runs” or “clumps” where the data set as a whole satisfies the test 

but there are groups of ages with bias4
• use of squared deviations here zₓ2 means we learn nothing about the 

direction of individual biases5
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standardised deviations test
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standard deviations test i

28

cUse this to check 1. a few large deviations offset by many smaller deviations

If zx’s are m independent samples from Normal(0,1) this tests for that normality

consider some intervals e.g. (-∞,-2) (-2,-1) (-1,0) (0,1) (1,2) (2,∞)

count number of observed zx in each interval and compare with what would be 
expected under Normal(0,1)

   



standard deviations test ii
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c  

we can then set up a new χ2 statistic

  X =       (actual – expected)2

           expected

Interval (-∞,-2) (-2,-1) (-1,0) (0,1) (1,2) (2, ∞) 

Expected 
number

0.02m 0.14m 0.34m 0.34m 0.14m 0.02m

Actual zₓ 
count

□ □ □ □ □ □

∑
intervals

X in this example should be 
χ2 on 5 degrees of freedom 
(6 intervals so 5 d-of-f)



alternative
an alternative standard deviations test uses the fact that if they are indeed from 
Normal(0,1) then ½ the zₓ’s should be in the interval (-⅔, ⅔)

the number of zₓ’s outside the range (-⅔, ⅔) should be Binomial(m, 0.5)

We reject the hypothesis if the number outside the range (that is │zₓ│ > ⅔)         
is in the upper 5% tail of Binomial(m, 0.5)

If we have subdivided our zₓ’s more and have large enough m,  we could 
similarly check 
◦ 1 in 20 of │zₓ│ > 1.96
 1 in 100 of │zₓ│ > 2.57
In general we will be suspicious of any zₓ’s >2 or <-2
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signs test
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signs test

32

cLet P = number of zₓ’s which are positive

under our hypothesis, P ~ Binomial(m, ½)

We can test this by finding k* the smallest k for which ∑      ½m ≥ 0.025

our (two-tailed) test is satisfied at the 5% level if

    k*  ≤ P ≤  m – k*

if m is large we can use the approximation P ~ Normal( ½m, ¼m )

m
 j

j=0

k



cumulative deviations test
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cumulative deviations test (i)

34

cTests for overall bias or a long run of deviations of the same sign

for [graduated data] we have the hypothesis: dₓ ~ Normal(Exµx+½ , Exµx+½)

then the deviation has the approximate distribution

   dₓ - Exµx+½ ~ Normal(0, Exµx+½)

and accumulated deviation over the whole range has the distribution

    ∑[dₓ - Exµx+½ ] ~ Normal(0, ∑ Exµx+½)

°°

° °
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cumulative deviations test (ii)

35

cwe can standardise this

    ∑[dₓ - Exµx+½ ] ~ Normal(0, 1)

     √  ∑ (Exµx+½)

which can be tested in the usual way (with a two-tailed test usually)

this can be applied just to parts of the age range with financial significance 
rather than all ages if desired

°

°

all ages

all ages

c

c

This test will not work if the method of graduation used is designed to produce a cumulative deviation of 0



grouping of signs / Steven’s test
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grouping of signs test (i)

37

cDetects “clumping” a group of deviations of the same sign

Let G = number of groups of positive zₓ’s

of m deviations if we say n1 are positive and n2 are negative (n1+n2=m)

under our hypothesis, the n1and n2 deviations are arranged in random order

we calculate the probability of at least G groups of positive deviations given 
n1and n2 deviations and test this at the 5% level

There are  n2+1  ways to arrange t (≤G) positive groups amongst n2 negative signs

             t



grouping of signs test (ii)

38

cand there are  n1-1  ways to arrange n1 positive signs into t groups

                  t-1

finally there are  m   ways to arrange n1 positive and n2 negative signs 

        n1

so the probability of exactly t positive groups is   n1-1   n2+1

                  t-1       t

            m

            n1



grouping of signs test (iii)

39

cThen we seek k* which is the smallest k such that

    n1-1   n2+1

                               t-1       t          ≥ 0.05      and the test fails if G < k*

           m

                       n1

if m large (generally if m>20) we can use the approximation

G ~ Normal  n1(n2+1) ,   (n1n2)2

                          n1+ n2     (n1+n2)3

∑
t=1

k



serial correlations test
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serial correlations test

41

c
the last test we consider 

Our hypothesis is that if the two sequences z1 z2… zm-1 and z2 z3 … zm (both of 
length m-1) are uncorrelated, then so too should be the two sequences (of 
length m-2) z1 z2 … zm-2 and z3 z4 … zm
◦ these are known as ‘lagged sequences’

The test will:

▪ calculate rj the correlation coefficient of the jth lagged sequence

▪ then rj ~ Normal(0,1/m) under a hypothesis of uncorrelated lagged sequences

▪ we can test rj√m against Normal(0,1) where high values indicate a tendency for   
deviations of the same sign to cluster



the correlation coefficient rj
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if m large  rj simplifies to
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statistical tests we have covered

χ2 test
standardised 

deviations test
signs test

cumulative 
deviations test

grouping of 
signs test

serial 
correlations 

test

44
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Graduation: 
methods and tests
CHRIS SUTTON

NOVEMBER 2023
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last week we covered

comparing experience with standard tables

introduction to graduation 

desirable features of a graduation

statistical tests of mortality experience and goodness of fit

47



this week we will cover

4 methods of graduation

comparison of the methods

duplicate policies
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Methods of graduation
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4 methods

50

c graphical methods

by some parametric formula

with reference a standard table

using spline functions



Graphical Graduation methods
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graphical method

52

cHistorically this is the way that graduation was performed by 
actuaries before the use of computers

draw a curve through a plot of the crude qₓ or µₓ
➢quick

➢visual

➢with obvious limitations

➢actually very hard to do well in practice

‸‸



graphical method

53

ceasier to complete if the plot is on a log-scale
• will be closer to a straight line fit (per Gompertz)

 accuracy can be improved by plotting some confidence intervals 
around the crude estimates e.g. qₓ + 2√dₓ /Eₓ  or   µₓ + 2√dₓ /Eₓ    and 
then check the graduated curve stays within the interval about 95% 
of the time

No longer used in practice

‸ c‸



Graduation by parametric formula
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Formulae

55

cParametric approaches seek to fit a certain formula for the force of mortality by 
finding maximum likelihood estimates for formula parameters.

Recall established formulae for µₓ from week 2

Gompertz-type terms have been found to be successful in modelling middle-age 
and older human life.

Gompertz µₓ = Bcx

Makeham µₓ = A + Bcx



UK life assurance industry approach
Recent standard tables for UK life assurance usage have adopted the parametric 
form:

  µₓ =  polynomial①  +   exp( polynomial② )

we can see Gompertz and Makeham as special cases of this form

56

we will consider the parametric curve-fitting technique used 
in the two most recent CMI standard tables: the “92 series” 
and the “00 series”



92 series building blocks

Poisson model
4 years of 

deaths data

central 
exposed to 

risk

male / female
different 

classes of life 
assurance

57



formula used
form

  µₓ =  f(α1, α2, … αr , αr+1 , … αr+s , x)

and

  polynomial① = α1 + α2x + α3x2 + … + αr x
r-1

  polynomial② = αr+1 + αr+2x + αr+3x2 + … + αr+s x
s-1

58

°



Poisson likelihood
Poisson likelihood = (µx+½)dₓ exp(- µx+½Eₓ) x constants

  = f(α1, α2, … αr+s , x+½ )dₓ exp(- f(α1, α2, … αr+s , x+½ )Eₓ) x constants

Total likelihood =          f(α1, α2, … αr+s , x+½ )dₓ exp(- f(α1, α2, … αr+s , x+½ )Eₓ) 

This likelihood is maximised by numerical methods to obtain MLEs for α1, α2, …
αr+s and hence µx

59
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sense checks

male mortality > female mortality

mortality for those with life assurance < general population

mortality lower for those who recently took out life assurance

60

with all graduations we should perform some simple sense-checks on the results:



financial risks
for life assurance the 

risk is that we 
underestimate 

mortality

for annuities and 
pensions the risk is 

that we overestimate 
mortality

61



mortality trends
Graduated mortality tables will be used in practice to estimate future mortality

however the table will be based on an investigation of past mortality

Mortality trends are important:
◦ rates have generally been falling over time

◦ this gives a margin of safety for life assurance business but means that 
projections of future improvements are needed for annuity and pensions 
business

We will consider Mortality Projections in more detail in week 11
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tests
In practice the CMI and others doing graduation will try fitting 
different formulae

◦ Gompertz   α1exp(α2x)

◦ Makeham   α1 + α2exp(α3x)

◦ α1 + α2exp(α3x + α3x2)

◦ …

Then use the statistical tests of ‘goodness-of-fit’ discussed last week 
to evaluate the different formulae
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Graduation by reference to a standard 
table

64



the appeal of standard tables

65

cPublished life tables (e.g. 92 series, English Life Tables and others) 
◦ are based on a well-defined class of lives 

◦ although never a fully homogeneous group of course

If our mortality experience is from a similarly constituted group, but 
with fewer lives, the characteristics of mortality in a standard table 
can be a useful basis for graduation



the approach

66

cif qₓ or µₓ are from a standard table

and qₓ or µₓ are the graduated rates we seek to produce

then we look for some simple function f() such that 

   qₓ = f(qₓ) or  µₓ = f(µₓ)

examples:

   qₓ = a + bqₓ

   µₓ = µₓ + c

   µₓ = µx+d
a, b, c, d some constantss

s

s

ss

ss
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where to begin

67

cin looking for suitable function f() we can begin with a simple graph
◦ plot of qₓ against qₓ might show a linear relationship in q

◦ plot of –log(1-qₓ) against –log(1-qₓ) might indicate a linear relationship in µ

◦ concentrate on where q has the most data, not at the extreme ages

◦ once a type of relationship has been detected, best fitting parameters for f() 
need to be found. There are a number of ways to do this, 2 common ones are:

◦ maximum likelihood

◦ least squares

s

s

~

~
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fitting parameters
1. maximum likelihood

let qₓ = f(α1, α2, .. αn, qₓ)

or µₓ = f(α1, α2, .. αn, µₓ)

where

α1, α2, .. αn, are unknown parameters

2. least squares

parameters are those which minimise

∑ wₓ (qₓ - qₓ)2 or the equivalent in µ

where {wₓ} are weights
◦ the inverse of the estimated 

variance of q or µ are good initial 
candidates for weights

68
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comments

69

cwe would normally try a number of candidate functions f(q) or f(µ) 
and compare them using the statistical tests for ‘goodness-of-fit’ we 
introduced last week

as with parametric graduation, we would again want to:
◦ perform sense checks (male/female; insured/population; recent medical/not)

◦ consider the direction of financial risks (life assurance / annuity)



Comparison of methods
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which method?

71

c

parametric 
method for 

larger data sets
standard table 

method for 
smaller data sets



parametric formula graduation
❑ this method is a natural extension of the simple probabilistic models for single 
years of age

❑ it is straightforward to extend the statistical theory of estimation to several 
parameters

❑ computer programs exist to complete the necessary optimisations

❑ with a small number of parameters, the graduation is sure to be smooth

❑ a good method for comparing a number of different experiences (different 
sales channels, time periods, life offices etc) is to fit the same type of parametric 
formula to each and then the differences between the parameter values fitted 
will give insight into the differences between the various experiences
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parametric (continued)
❑ this method is a good way to produce standard tables from large amounts of 
data

❑ it can be difficult to find one curve that fits all ages well as different features 
are important at different ages:
❑infant mortality

❑the accident hump

❑exponential mortality in older ages

❑ the existence of heterogeneity in all data sets increases the difficulty further

❑ need to be careful with any extrapolations which will be prone to large 
inaccuracy
❑ because most studies are heavy in data in middle ages, many tables and studies are effectively an 

extrapolation of graduation at very young and very old ages
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standard table graduation
❑ a good way of adapting small data sets for use in practical actuarial work

❑ the CMI themselves have found that later year’s life assurance company 
data can be fitted as linear functions of the ‘92 series 

❑ as we begin with smooth standard tables, as long as the f() is simple, the 
graduation will be smooth too

❑ the choice of standard table is clearly very important with this method
❑ an inappropriate choice of standard table for graduation could lead to the wrong 

shape for the whole exercise
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Graduation using spline functions
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splines
An alternative to a single parametric formula

Split the age range of the graduation into different parts
◦ Fit a polynomial of a specified degree to each part of the range

◦ The different pieces join at knots

◦ Selecting the knots is not easy

◦ Certain conditions are imposed on the spline functions and on their 
derivatives to ensure continuity at the knots

Polynomials of degree 3 are common – so called cubic splines

The English Life Tables which cover the whole population have used this 
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Statistical tests of mortality experience

77

 



tests

78

c

χ2
 t

es
t

standard 
deviations

signs

cumulative 
deviations *

grouping of signs

serial correlations

The statistical 
tests described 
last week can be 
used to test a 
graduation

* cannot use the cumulative 
deviations test if the method 

of graduation gives zero 
cumulative deviation by design



χ2 test
we need to modify the χ2 test when testing a graduation:

recall that when testing goodness-of-fit with a standard table, the chi-squared 
statistic ∑zₓ2 had a χ2 distribution on m degrees of freedom 
◦ m = the number of years of age we are comparing

when comparing actual experience with a standard table, the actual deaths and 
expected deaths come from different data

however when comparing actual experience with a graduation, the {q} or {µ}  
use the data from actual deaths
◦ so we have to reduce the number of degrees of freedom in the χ2 test 

79
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how many fewer d-of-f ?
graphical
▪ very difficult to know how many degrees-of-freedom is right

▪ suggest lose 2 or 3 d-of-f for every 10 ages fitted corresponding to height / 
slope / (and maybe) curvature in that range

parametric formula
▪ lose one degree-of-freedom for each parameter fitted
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how many fewer d-of-f ?
standard table
▪ lose one degree-of-freedom for each parameter fitted
▪ plus other number of d-of-f due to the constraints imposed by choosing the 

standard table
▪ best approach is not to be prescriptive but calculate the χ2 statistic and allow 

plenty of margin when comparing with the critical value at m minus no. 
parameters 

splines
▪ will vary considerably depending on the nature of the polynomials fitted
▪ certainly one d-of-f for each parameter fitted and one for each knot
▪ more if placement of the knots a result of examining the data
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Duplicate policies
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the issue

83

cCMI observes policies not lives, so

     Eₓ = number of policy years (not person years)

     dₓ = number of policies becoming a claim by death (not number of deaths)

because some people have multiple policies, claim observations are not entirely 
independent [more than 1 claim might result from 1 death]

this is the problem of duplicate policies



framework
assume we observe N lives age [x, x+1]
◦ no censoring

◦ no new entrants

◦ so lives are statistically independent

a proportion πi of the lives own i policies (i=1,2,3,…)
◦ so π2  own 2 policies etc

so total number of policies observed is   ∑ iπiN

each life still have probability qₓ of death within the year

84

all i

in practice, in a real 
investigation, we 
will observe the 
total policies but will 
not know the {πi}



distributions
if total number of claims is C we cannot assume C is Binomial because of the 
non-independence of claims

instead, let Di = number of deaths amongst the πiN lives with i policies

           Ci = number of claims amongst the same lives

then Di ~ Binomial(qₓ, πiN) as deaths are assumed independent

and expected number of claims

E[C]  =  E[∑Ci]  =  E[∑iDi]  =  ∑iE[Di]  =  ∑iπiNqₓ

85
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variance
Var[C]  =  Var[∑Ci]  =  Var[∑iDi]  

   =  ∑i2Var[Di]     because of the independence of deaths

   =  ∑i2πiNqₓ(1-qₓ)  

if policies were independent [which they are not] then the variance of C would 
be ∑iπiNqₓ(1-qₓ) 

therefore duplicate policies increase the variance of the number of claims
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rₓ
Duplicate policies increase Var(C) in the ratio r which varies by age (because the 
πi proportions will be different at each age) giving a set of rₓ values

CMI have estimated some rₓ values by tracing duplicate policies in-force in 
special investigations of a sub-set of their data
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r = ∑i2πi

          ∑iπi
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