
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 10: PDE revision and the 
wave equation
Finite differencing, pseudospectral methods and their application 
to the heat equation



Plan for today
1. Revision of PDE types and their properties


2. Problems with PDEs  - well posedness


3. Problems with PDEs  - Von Neumann stability and the CFL condition


4. Solving second order in time PDEs - solution of the wave equation



Classification of second order PDEs
Consider the most general second order PDE for 1 dependent variable with 2 
independent variables: 
 

       


The equation is classified based on the discriminant :
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Example 1: The heat equation
The heat equation, (  is a positive constant, S is any function of u, x and t but 
not their derivatives)
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What type is this equation?




Example 1: The heat equation
The heat equation is a parabolic equation 


 

                          -> A = , E = -1, B = C = D = 0, F = S


This equation is first order in time, so solutions will evolve in time as 
exponentials in response to an instantaneous source. The dependence on the 
second derivative in space means that it has a tendency to smooth the 
solution - any bumps in the solution decrease in time assuming  is positive.
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Example 2: The wave equation
The wave equation (c is a positive constant, S is any function of u, x and t but 
not their derivatives)
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What type is this equation?




Example 2: The wave equation
The wave equation is a hyperbolic equation 


 

                         -> A = , C = -1, B = D = E = 0, F = S


This equation is second order in time, so solutions will evolve in time with 
oscillations in response to an instantaneous source. The dependence on the 
second derivative in space means that it has a tendency to pull any bumps 
back towards zero displacement.


Hyperbolic equations have a finite speed of propagation of information - c.
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Example 3: Poisson’s equation
The Poisson equation (f is any function of u, x and t but not their derivatives)


 

       

∂2u
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= f

What type is this equation?




The Poisson equation is an elliptic equation 


 

                        -> A = 1, C = 1, B = D = E = 0, F = -f


This equation is second order in both dimensions, which are usually thought 
of as two spatial directions (for reasons we will discuss next). If the source f is 
zero it is called Laplace’s equation, and for zero boundary conditions the solution 
is a constant. A non zero source creates a displacement or bump in the solution.


Elliptic equations have an infinite speed of propagation of information.
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Example 3: Poisson’s equation



Example 3: Poisson’s equation in 1D
The Poisson equation (f is any function of u, x and t but not their derivatives)


 

       

∂2u
∂x2

= f

What type is this equation?




The Poisson equation (f is any function of u, x and t but not their derivatives)


 

       

d2u
dx2

= f

Trick question! This is just an ODE like we studied before as 
there is only one independent variable!

Example 4: Poisson’s equation in 1D



Example 5: Katy’s equation
Katy’s equation (f is any function of u, x and t but not their derivatives)


 

     

∂2u
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∂2u
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What type is this equation?




Example 5: Katy’s equation
Katy’s equation (f is any function of u, x and t but not their derivatives)


 

      

∂2u
∂t2

+ (t − 10)
∂2u
∂y2

= f

This equation changes character at t=10 - before it is 
hyperbolic and after it is elliptic.


A system of PDEs can be of mixed type (e.g. Navier Stokes 
is mixed parabolic/hyperbolic) and they can change type at 
different points in space and time.



Plan for today
1. Revision of PDE types and their properties


2. Problems with PDEs  - well posedness


3. Problems with PDEs  - Von Neumann stability and the CFL condition


4. Solving second order in time PDEs - solution of the wave equation



Well posed problems - very active area of 
QMUL research!
• QMUL Maths is one of the 

leading places for solving issues 
of well-posedness.


• e.g. Prof Claudia 
Garetto of  
geometry, analysis  
and gravitation  
centre



Well posed problems

• An initial value / Cauchy problem is well posed if:


• A solution exists


• The solution is unique


• The solution depends continuously on the initial data

What is an initial value problem/Cauchy problem?


I exist and  
I am uniqueU



Initial value problem

• One of the independent variables is 
thought of as “time” (doesn’t have to 
actually be time)


• Boundary value is provided as a 
value of the function at some 
(arbitrary) time t=0


• Full solution is found by integrating 
in time


• We will see an alternative (boundary 
value solution via relaxation) next 
week

U

Space x

Time t

Initial condition u(x, t=0) provided for all space at t=0

Integrate for solution at later time



Well posed problems

• An initial value / Cauchy problem is well posed if:


• A solution exists


• The solution is unique


• The solution depends continuously on the initial data

What did it mean for the solution to depend 
continuously on the initial data?


I exist and  
I am unique



Well posed problems
Recall for ODEs:


• If  it tells us that 
the solution changes by an amount that 
is bounded by  where L is some 
constant value - this is the meaning of 
“depends continuously on the initial 
data”.


• We had the example that blows up at a 
value that depends on the initial 
conditions, so that a small change results 
in a change that is not bounded by an 
exponential

x1(0) = a, x2(0) = a + δ

δ eLt



Well posed problems

• An initial value / Cauchy problem is well posed if:


• A solution exists


• The solution is unique


• The solution depends continuously on the initial data

How can a solution not exist?


I exist and  
I am unique



Well posed problems

For Laplace’s equation 





with fixed boundary conditions





No solution exists if 


A nice detailed explanation is here: https://youtu.be/BmTFbUAOeec?si=22bdWktp55xLcT3s 
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Region D of solution for u
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Well posed problems

• An initial value / Cauchy problem is well posed if:


• A solution exists


• The solution is unique


• The solution depends continuously on the initial data

How can a solution not be unique?


I exist and  
I am unique



Well posed problems

Consider Poisson’s equation 





with periodic boundary conditions 



Then for any solution  the solution 
 with C a constant is 

also a solution.


∂2u
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+
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= f

u(x = L) = u(x = 0)

u(x, t)
ū(x, t) = u(x, t) + C

U

Space x
x=Lx=0



Well posed problems

• Theorems in mathematics guarantee the (local) well-
posedness of linear and quasi-linear* strongly 
hyperbolic* and parabolic PDEs. 


• Elliptic PDEs do not admit a well-posed IVP. This 
does not (necessarily) mean they cannot be solved, 
just that another method may be required.


• When in a correct numerical implementation one 
increases the resolution and the solution blows up 
faster, that usually implies an ill-posed initial value 
problem. 

I exist and  
I am unique

*We will discuss the exact meaning of these terms next week.  
For now just think of hyperbolic and parabolic equations as generally ok.



Well posed problems - why elliptic equations fail as an 
initial value problem
Consider Laplace’s equation but treat one of the directions as a “time”:





And propose a wave like solution 





Then





Which blows up exponentially at a faster rate for higher k (= shorter wavelengths)

∂2u
∂t2

+
∂2u
∂x2

= 0

u(x, t) = exp(i[ωt − kx])

−ω2u − k2u = 0 ⟹ ω = ± i |k | ⟹ u(x, t) = A exp( |k | t + ikx) + . . .



Plan for today
1. Revision of PDE types and their properties


2. Problems with PDEs  - well posedness


3. Problems with PDEs  - Von Neumann stability and the CFL condition


4. Solving second order in time PDEs - solution of the wave equation



Von Neumann stability analysis and the CFL 
condition (Courant Friedrich Lewy)
• Like for ODEs, numerical schemes for PDEs can be unstable, and they have to be analysed 

for each PDE and PDE scheme separately


• For an initial value problem, this usually results in a “CFL condition” on the time step of the 
form: 
 
                      for hyperbolic equations 
                     for parabolic equations


• The main method to determine the CFL number  is called the Von Neumann stability 
analysis. It is a is necessary but not sufficient condition for stability.


• Just by physical arguments, for disturbances travelling at a speed of c we should expect 
, and our physical/mathematical intuition can always do the job for us - starting with 

our intuitive stability condition, we could use trial and error to find how high/low  can be 
before the code becomes numerically unstable

Δt = λΔx
Δt = λΔx2

λ

λ ≤ 1/c
λ



Von Neumann stability analysis
Method:


1. Assume a harmonic perturbation of the form


          


2. Calculate for the given numerical scheme the amplification factor between timesteps


          


3. Require  for the solution to not be amplified, which gives rise to a condition


            where  is the CFL number

u(x, t) = exp(i[ωt − kx])

Λ =
un+1

i

un
i

|Λ | ≤ 1

Δt = λΔx λ



Plan for today
1. Revision of PDE types and their properties


2. Problems with PDEs  - well posedness


3. Problems with PDEs  - Von Neumann stability and the CFL condition


4. Solving second order in time PDEs - solution of the wave equation



Recall: How do I integrate second order ODEs numerically?

t

y

d2y
dt2

−
dy
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+ f(y, t) = 0

dv
dt

− v + f(y, t) = 0

dy
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= v

Δv = Δt (v − f(y, t))

Δy = v Δt

{

Δt

y(t)

y(t) + Δy

1. Decompose the 
second order 

equation into two 
first order ones

2. Solve as a 
dimension 2 

first order 
system



Solving second order PDEs - the wave equation
Consider the wave equation for u:





And define the time derivative to be


          
 
Then we solve the coupled system:


,              
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Recall that we can also represent this in matrix form: 

Wave equation - matrix representation
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Recall that we can also represent this in matrix form: 

Wave equation - matrix representation
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Need to unpack and repack the state vector in python. 


Some useful commands: 

Wave equation - state vector in python
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In the tutorial you will update the heat equation code from last week for the 
wave equation, and test the CFL condition. 

Wave equation - tutorial

CFL condition respected CFL condition not respected



Plan for today
1. Revision of PDE types and their properties


2. Problems with PDEs  - well posedness


3. Problems with PDEs  - Von Neumann stability and the CFL condition


4. Solving second order in time PDEs - solution of the wave equation


