MTH6107 Chaos \& Fractals

Solutions 6

EXAM QUESTIONS: Exercises 1-5 below correspond to the various parts of Question 4 on the January 2023 exam paper, and Exercise 6 corresponds to Question 1 on the same exam paper.

Exercise 1. For the function $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{1}(x)=\sum_{i=0}^{9} x^{2 i+1}$, give a formula for the derivative $f_{1}^{\prime}(x)$.

The derivative is given by

$$
f_{1}^{\prime}(x)=\sum_{i=0}^{9}(2 i+1) x^{2 i}=1+\sum_{i=1}^{9}(2 i+1) x^{2 i} .
$$

Exercise 2. Using properties of the derivative f_{1}^{\prime}, or otherwise, show that the only periodic point for f_{1} is the fixed point at 0 .

Since each $x^{2 i} \geq 0$ for all $x \in \mathbb{R}$, from the formula for f_{1}^{\prime} we see that $f_{1}^{\prime}(x) \geq 1>0$ for all $x \in \mathbb{R}$.

Clearly 0 is a fixed point.
To see that there are no other fixed points, note that the fixed point equation $f_{1}(x)=x$ becomes $\sum_{i=1}^{9} x^{2 i+1}=0$, but 0 is the only solution to this because $\sum_{i=1}^{9} x^{2 i+1}$ is a strictly monotone function of x.

To see that there are no points of period strictly larger than 1 it suffices to note that f_{1} is a diffeomorphism, and is orientation-preserving since $f_{1}^{\prime}>0$, and then cite the result proved in lectures that orientation-preserving diffeomorphisms do not have periodic points of period strictly larger than 1.

Exercise 3. For the function $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{2}(x)= \begin{cases}-2(1+x) & \text { for } x<0 \\ x-2 & \text { for } x \geq 0\end{cases}
$$

evaluate the set $\left\{n \in \mathbb{N}: f_{2}\right.$ has a point of least period $\left.n\right\}$, being careful to justify your answer.

The map f_{2} is continuous, and has an orbit of least period 3 , namely $\{-2,2,0\}$, therefore by Sharkovskii's Theorem, $\left\{n \in \mathbb{N}: f_{2}\right.$ has a point of least period $\left.n\right\}$ is the whole of \mathbb{N}.

Exercise 4. For the function $f_{3}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{3}(x)= \begin{cases}-2(1+x) & \text { for } x<0 \\ x / 2-2 & \text { for } x \geq 0\end{cases}
$$

evaluate the set $\left\{n \in \mathbb{N}: f_{3}\right.$ has a point of least period $\left.n\right\}$, being careful to justify your answer.

We claim that $\left\{n \in \mathbb{N}: f_{3}\right.$ has a point of least period $\left.n\right\}=\{1,2,4\}$.
To see this, note that the map f_{3} is continuous, and has an orbit of least period 4, for example $\{-2,2,-1,0\}$, therefore by Sharkovskii's Theorem, $\{n \in \mathbb{N}$: f_{3} has a point of least period $\left.n\right\}$ contains $\{1,2,4\}$. (Alternatively, computation shows that $-2 / 3$ is the unique fixed point, and $\{-3 / 2,1\}$ is the unique 2 -cycle).

We now justify the assertion that if $n \notin\{1,2,4\}$ then f_{3} does not have an n-cycle.
First note that if $x<-2$ then $f_{3}(x)>2$, and if $y>2$ then $f_{3}^{n}(y) \in[-2,2]$ for some $n \in \mathbb{N}$, and if $z \in[-2,2]$ then $f_{3}(z) \in[-2,2]$, therefore all periodic points of f_{3} belong to $[-2,2]$.

First we claim that every point in

$$
X:=[-2,2] \backslash\left(\left\{-\frac{3}{2}, 1\right\} \cup(-1,0)\right)=\left[-2,-\frac{3}{2}\right) \cup\left(-\frac{3}{2},-1\right] \cup[0,1) \cup(1,2]
$$

has least period 4. To see this note that $f_{3}((1,2])=(-3 / 2,-1], f_{3}((-3 / 2,-1])=$ $[0,1), f_{3}([0,1))=[-2,-3 / 2)$, and $f_{3}([-2,-3 / 2))=(1,2]$, and if $x \in(1,2]$ then $f_{3}(x)=x / 2-2, f_{3}^{2}(x)=-2(1+x / 2-2)=2-x, f_{3}^{3}(x)=(2-x) / 2-2=-1-x / 2$, $f_{3}^{4}(x)=-2(1-1-x / 2)=x$.

Next we note that if $x \in(-1,0)$ is not the fixed point $-2 / 3$ then x is eventually periodic: either $f_{3}^{n}(x) \in(1,2]$ for some $n \in \mathbb{N}$ so x is eventually periodic of least period 4, or $f_{3}^{n}(x)=-3 / 2$ for some $n \in \mathbb{N}$ so x is eventually periodic of least period 2 (there are countably many such points: $\ldots-23 / 32 \mapsto-9 / 16 \mapsto-7 / 8 \mapsto-1 / 4 \mapsto-3 / 2$).

Therefore we have shown that there are no periodic points whose least period is not equal to either 1,2 or 4 .

Exercise 5. Without using Sharkovskii's Theorem, show that every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which has a periodic orbit must have a fixed point. [Hint: Use the Intermediate Value Theorem.]

If f has a periodic orbit then either it is a fixed point, in which case there is nothing to prove, or the smallest point x^{-}in the periodic orbit is distinct from the largest point x^{+}in the periodic orbit. Now $f\left(x^{-}\right)$lies in this periodic orbit, so $f\left(x^{-}\right)>x^{-}$, and $f\left(x^{+}\right)$lies in this periodic orbit, so $f\left(x^{+}\right)<x^{+}$. Therefore the function g defined by $g(x):=f(x)-x$ is continuous, with $g\left(x^{-}\right)>0$ and $g\left(x^{+}\right)<0$, so by the Intermediate Value Theorem there exists $c \in\left(x^{-}, x^{+}\right)$with $g(c)=0$, therefore c is a fixed point of f.

Exercise 6. Given an iterated function system defined by the maps $\phi_{1}(x)=(x+1) / 10$ and $\phi_{2}(x)=(x+4) / 10$, define $\Phi(A)=\phi_{1}(A) \cup \phi_{2}(A)$, and let C_{k} denote $\Phi^{k}([0,1])$ for $k \geq 0$.
(a) Determine the sets C_{1} and C_{2}.
(b) If C_{k} is expressed as a disjoint union of N_{k} closed intervals, compute the number N_{k}.
(c) What is the common length of each of the N_{k} closed intervals whose disjoint union equals C_{k} ?
(d) Compute the box dimension of $C=\cap_{k=0}^{\infty} C_{k}$, being careful to justify your answer.
(e) Compute the box dimension of $D=\cap_{k=0}^{\infty} \Psi^{k}([0,1])$, where $\Psi(A)=\psi_{1}(A) \cup$ $\psi_{2}(A)$, and $\psi_{1}(x)=(x+1) / 16, \psi_{2}(x)=(x+4) / 16$.
(f) Describe a set E whose box dimension is equal to $4 / 5$, being careful to justify your answer.
(a)

$$
\begin{gathered}
C_{1}=\left[\frac{1}{10}, \frac{2}{10}\right] \cup\left[\frac{4}{10}, \frac{5}{10}\right], \\
C_{2}=\left[\frac{11}{100}, \frac{12}{100}\right] \cup\left[\frac{14}{100}, \frac{15}{100}\right] \cup\left[\frac{41}{100}, \frac{42}{100}\right] \cup\left[\frac{44}{100}, \frac{45}{100}\right] .
\end{gathered}
$$

(b) $N_{k}=2^{k}$ because $N_{0}=1$ and the recursive procedure doubles the number of intervals at each step.
(c) The common length is 10^{-k}, because the length of the closed intervals decreases by a factor of 10 at each step, and the length of $C_{0}=[0,1]$ is 1 .
(d) If $\varepsilon_{k}=1 / 10^{k}$ then $N\left(\varepsilon_{k}\right)=2^{k}$, so the box dimension equals

$$
\lim _{k \rightarrow \infty} \frac{\log N\left(\varepsilon_{k}\right)}{-\log \varepsilon_{k}}=\lim _{k \rightarrow \infty} \frac{k \log 2}{k \log 10}=\frac{\log 2}{\log 10} .
$$

(e) By analogy with the above calculation, at each step of the recursive procedure the number of intervals increases by a factor of $\beta=2$, while the length of these intervals decreases by a factor of $\alpha=1 / 16$, so the box dimension is equal to

$$
\frac{\log \beta}{\log (1 / \alpha)}=\frac{\log 2}{\log 16}=\frac{\log 2}{\log 2^{4}}=\frac{\log 2}{4 \log 2}=\frac{1}{4} .
$$

(f) By analogy with the above calculation, it suffices to describe a recursive procedure where at each step the number of intervals increases by a factor of $\beta=2^{4}$ and the length of these intervals decreases by a factor of $\alpha=1 / 2^{5}$, since in that case the box dimension is equal to

$$
\frac{\log \beta}{\log (1 / \alpha)}=\frac{\log 2^{4}}{\log 2^{5}}=\frac{4 \log 2}{5 \log 2}=\frac{4}{5} .
$$

Explicitly, we might define $\phi_{j}(x)=(x+2 j-1) / 2^{5}$ for $1 \leq j \leq 2^{4}$, then set

$$
\Phi(A)=\bigcup_{j=1}^{2^{4}} \phi_{j}(A),
$$

and define $E=\cap_{k=0}^{\infty} \Phi^{k}([0,1])$.

