MTH6107 Chaos \& Fractals

Exercises 6

EXAM QUESTIONS: Exercises 1-5 below correspond to the various parts of Question 4 on the January 2023 exam paper, and Exercise 6 corresponds to Question 1 on the same exam paper.

Exercise 1. For the function $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{1}(x)=\sum_{i=0}^{9} x^{2 i+1}$, give a formula for the derivative $f_{1}^{\prime}(x)$.

Exercise 2. Using properties of the derivative f_{1}^{\prime}, or otherwise, show that the only periodic point for f_{1} is the fixed point at 0 .

Exercise 3. For the function $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{2}(x)= \begin{cases}-2(1+x) & \text { for } x<0 \\ x-2 & \text { for } x \geq 0\end{cases}
$$

evaluate the set $\left\{n \in \mathbb{N}: f_{2}\right.$ has a point of least period $\left.n\right\}$, being careful to justify your answer.

Exercise 4. For the function $f_{3}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{3}(x)= \begin{cases}-2(1+x) & \text { for } x<0 \\ x / 2-2 & \text { for } x \geq 0\end{cases}
$$

evaluate the set $\left\{n \in \mathbb{N}: f_{3}\right.$ has a point of least period $\left.n\right\}$, being careful to justify your answer.

Exercise 5. Without using Sharkovskii's Theorem, show that every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which has a periodic orbit must have a fixed point. [Hint: Use the Intermediate Value Theorem.]

Exercise 6. Given an iterated function system defined by the maps $\phi_{1}(x)=(x+1) / 10$ and $\phi_{2}(x)=(x+4) / 10$, define $\Phi(A)=\phi_{1}(A) \cup \phi_{2}(A)$, and let C_{k} denote $\Phi^{k}([0,1])$ for $k \geq 0$.
(a) Determine the sets C_{1} and C_{2}.
(b) If C_{k} is expressed as a disjoint union of N_{k} closed intervals, compute the number N_{k}.
(c) What is the common length of each of the N_{k} closed intervals whose disjoint union equals C_{k} ?
(d) Compute the box dimension of $C=\cap_{k=0}^{\infty} C_{k}$, being careful to justify your answer.
(e) Compute the box dimension of $D=\cap_{k=0}^{\infty} \Psi^{k}([0,1])$, where $\Psi(A)=\psi_{1}(A) \cup$ $\psi_{2}(A)$, and $\psi_{1}(x)=(x+1) / 16, \psi_{2}(x)=(x+4) / 16$.
(f) Describe a set E whose box dimension is equal to $4 / 5$, being careful to justify your answer.

