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Today's lecture

o Review

@ Metropolis-Hastings in Bayesian inference to generate samples from
the posterior pdf.
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MH for Bayesian inference

o Goal: Generate a sample 61,65,... from the posterior pdf, p(0 | y).

—

@ p(f | y) is called the target distribution.

@ Last time we saw that posterior densities can be complicated when
not using a conjugate prior distribution.

o It is difficult to find the normalising constant with a non-conjugate
prior distribution, and hence we cannot simulate directly from

p(0 | y).
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MH for Bayesian inference

@ In these cases, MCMC are helpful.

@ Metropolis-Hastings is a special case of a MCMC that can generate
a sample 61,05, ... that is approximately from p(6 | y).

-
@ The sample 01,05, ... is a Markov chain whose distribution
converges to p(6 | y) (under some conditions).
>
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Metropolis-Hastings algorithm

The algorithm constructs 64,65, ... as follows.
N——Y¥ —
Start with arbitrary 6;. Suppose we have generated {6,,...,0,}. To
—_ Y v

generate 6, ., do the following
@ Generate a proposal random variable v from distribution ¢(¢ | 6;).
@ Compute the acceptance probability

@ Set
— ¢ with probability 7,
Oiv1 = . .
6; with probability 1 — r.

In practice, generate U ~ U|0,1]. If.U < r, set 6,,.1 = 1, otherwise

<
set 9i+1 — 0;.
~— —
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Metropolis-Hastings algorithm terminology

@ ¢ is the proposal distribution: At each step, we propose a new rv
using the conditional distribution ¢(- | 6,) that depends on 6, (not
on the past). . )

o MH accepts 9 with probability

. min{l p(¥ | y)a (0, ¢)}
PO [ y)g(y | 6:)

called the acceptance probability.

o r reflects how likely it is that v is from p(6 | y).
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Symmetric Metropolis-Hastings algorithm

@ The simplest case uses a symmetric proposal distribution, that is

q(¢ | 0:) = q(0; | V).

@ In this case, the acceptance probability simplifies to

a2}

@ Does not involve the proposal density at all.

@ Some common examples of symmetric g: N(6,b%)
Y ~ U0 — a,0 + a] for some a > 0 S,}M Fls‘.{, J{‘y/y/ Mm/\
\/-\(-\_-
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Metropolis-Hastings algorithm for Bayesian inference

@ In Bayesian inference, the posterior density is

p( ) (y|9) _pB) py | 0)

\/’W\”
o It's difficult to find the normalizing constant

T:/p<9>p<y 0) df

@ We don't need to find this: The acceptance probability does not

depend on the normalizing constant E‘Vl{)[ W
i pw\yq& } %
| p(0: | y)g(v | 0:)
S @m ST,
~ @) ply 10 w\e)}

@ so we only need to know p(6 | y) up to a constant.
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Metropolis-Hastings algorithm for Bayesian inference

Define ¢(0) = p(0) p(y the non-normalized posterior density or the
Bayes numerator.

Generate 604,605, ... as follows:

o Start with 61, where g(61) > 0.

@ For each 7 > 1:

e>
o Generate ¥ ~ q(¥ | 6,). %G%

e — 60 Y

g(0:iYq(v | 0:)

aciok

o Set
1 with probability r
Oit1 = . N
0; with probability 1 —r
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Metropolis-Hastings algorithm for Bayesian inference

@ Metropolis-Hastings algorithm generates a sequence 8, ..., of
dependent or correlated 6 values.
- e.g., 0, is correlated with 6, because 1 has been rejected.

@ Also, 8%, ..., is Markov chain since eachﬁ is generated from
q(¢ | ;) that depends on the last accepted value 6,.

P adhd

@ In practice we cannot run the Markov chain forever but for some
large number of steps V.

N
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Metropolis-Hastings algorithm for Bayesian inference

@ But we can still use the sample@'(i),‘i =1, 2, .@o make

inferences about the posterior.

@ Under mild conditions, the empirical distribution of 6,

v =1,2,..., N will approximate well the posterior for large V.
————————
o We can view 0, i ::l f 2,...,NN as a sample from the posterior
p(0y).

@ Hence, we can approximate posterior means, quantiles and other
posterior quantities of interest using {0, ... 0%} for large N.
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Example: binomial data/beta prior

o Let £ =12 ~ binomial(40, ¢), where q is the probability of success.

‘w‘M/\_

@ ¢ ~ beta(2,2).

@ Apply the Metropolis-Hastings algorithm to simulate from the
posterior p(q|k) using normal proposal distribution with siish
standard‘\cl'ce/\/Tgaon b = 0.05.

@ Plot the histogram of the chain and compare it with the true
posterior

@ Compute the sample posterior mean, sample posterior median and

sample equal-tail interval and compare with the true posterior
summaries.
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Working on the log scale

@ The likelihood is typically a product of many terms.

n

p(y |0) =]]pil0)

1=1

@ For numerical stability, we usually do the computations using the log
of the posterior density.

@ So calculate

log (p(y | 6)) = ) log (p(y: | 0))

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Symmetric MH using the log scale

Qo

the Iog of the posterior density (up to a constant).

@ To work on the log scale, the part of the algorithm with the
acceptance probability changes.

@ Define (\ e l—OV\C

5 — mi L0 ) 0CCepio

min (0, £(y) ~ £ @" @mbgb(hg on
o Generate u ~ Uniform(Oll) ’H’E (%- SCOJZ
@ Set
{@b if log(u) <9
Oit1 = .
— 0; otherwise
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Example: Normal example with known variance

o Y,,...,Y, iid from N(0,0?) where ¢ is known.

@ 0 ~ N(u,7%) with 72 known. Or/\A P TNOW W\

——
@ Apply the Metropolis-Hastings algorithm on thto
simulate from the posterior p(0|y.,...,y.) after observing

Y:y:(yh)yn)

@ Use q(v0 | 0) ~ N(0,b%) with b=2, and q(v0 | 0) ~U(0 — 4,0 + 4).

e
| N
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Board example: binomial data/beta prior

o Let k = 12 ~ binomial(40, q), where q is the probability of success.
@ q ~ beta(2,2).

@ Apply the Metropolis-Hastings algorithm on the log-scale to
simulate from the posterior p(q|k) using normal proposal distribution
with standard deviation b = 0.06.
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