Lecture 9B MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture

- Review
- Metropolis-Hastings in Bayesian inference to generate samples from the posterior pdf.

MH for Bayesian inference

- **Goal:** Generate a sample $\theta_1, \theta_2, \ldots$ from the posterior pdf, $p(\theta \mid y)$.
- $p(\theta \mid y)$ is called the target distribution.
- Last time we saw that posterior densities can be complicated when not using a conjugate prior distribution.
- It is difficult to find the normalising constant with a non-conjugate prior distribution, and hence we cannot simulate directly from $p(\theta \mid y)$.

MH for Bayesian inference

In these cases, MCMC are helpful.

• Metropolis-Hastings is a special case of a MCMC that can generate a sample $\theta_1, \theta_2, \ldots$ that is **approximately** from $p(\theta \mid y)$.

• The sample $\theta_1, \theta_2, \ldots$ is a Markov chain whose distribution converges to $p(\theta \mid y)$ (under some conditions).

Metropolis-Hastings algorithm

The algorithm constructs $\theta_1, \theta_2, \ldots$ as follows.

Start with arbitrary θ_1 . Suppose we have generated $\{\theta_1,\ldots,\theta_i\}$. To generate θ_{i+1} do the following

- ① Generate a proposal random variable ψ from distribution $q(\psi \mid \theta_i)$.
- 2 Compute the acceptance probability

$$r = \min \left\{ 1, \frac{p(\psi \mid y)q(\theta_i \mid \psi)}{p(\theta_i \mid y)q(\psi \mid \theta_i)} \right\}.$$

Set

$$\theta_{i+1} = \begin{cases} \psi & \text{with probability } r, \\ \theta_i & \text{with probability } 1-r. \end{cases}$$

In practice, generate $U \sim U[0,1]$. If U < r, set $\theta_{i+1} = \psi$, otherwise set $\theta_{i+1} = \theta_i$.

Metropolis-Hastings algorithm terminology

- q is the proposal distribution: At each step, we propose a new rv ψ using the conditional distribution $q(\cdot \mid \theta_i)$ that depends on θ_i (not on the past).
- \bullet MH accepts ψ with probability

$$r = \min \left\{ 1, \frac{p(\psi \mid y)q(\theta_i \mid \psi)}{p(\theta_i \mid y)q(\psi \mid \theta_i)} \right\}$$

called the acceptance probability.

• r reflects how likely it is that ψ is from $p(\theta \mid y)$.

Symmetric Metropolis-Hastings algorithm

- The simplest case uses a symmetric proposal distribution, that is $q(\psi \mid \theta_i) = q(\theta_i \mid \psi).$
- In this case, the acceptance probability simplifies to

$$r = \min \left\{ 1, \frac{p(\psi \mid y)}{p(\theta_i \mid y)} \right\}.$$

- Does not involve the proposal density at all.
- Some common examples of symmetric q: $\psi \sim N(\theta,b^2)$, $\psi \sim U[\theta-a,\theta+a]$ for some a>0 Student's to distribution

In general | any proposal of the form $2(\psi|0| = f(|\psi-0|),$ where f is a 0 mean density, symmetric about 0 users us a symmetric proposal distribution. This is be cause $|\psi-0| = |\theta-\psi|$

In Bayesian inference, the posterior density is

$$p(\theta \mid y) = \frac{p(\theta) p(y \mid \theta)}{\int p(\theta) p(y \mid \theta) d\theta} = \frac{p(\theta) p(y \mid \theta)}{T}.$$

It's difficult to find the normalizing constant

$$T = \int p(\theta) \ p(y \mid \theta) \ d\theta.$$

• We don't need to find this: The acceptance probability does not depend on the normalizing constant

he normalizing constant
$$r = \min \left\{ 1, \frac{p(\psi \mid y)q(\theta_i \mid \psi)}{p(\theta_i \mid y)q(\psi \mid \theta_i)} \right\}$$

$$= \min \left\{ 1, \frac{p(\psi)p(y \mid \psi)}{p(\theta_i)p(y \mid \psi)} = \min \left\{ 1, \frac{p(\psi)p(y \mid \psi)}{p(\theta_i)p(y \mid \theta_i)} = \frac{1}{p(\psi)} \right\}.$$

• so we only need to know $p(\theta \mid y)$ up to a constant.

Define $q(\theta) = p(\theta) \; p(y \mid \theta)$, the non-normalized posterior density or the Bayes numerator.

Generate $\theta_1, \theta_2, \ldots$ as follows:

- Start with θ_1 , where $g(\theta_1) > 0$.
- For each i > 1:
 - Generate $\psi \sim q(\psi \mid \theta_i)$.
 - Let

$$r = \min \left\{ 1, \frac{g(\psi)}{g(\theta_i)} \frac{q(\theta_i \mid \psi)}{q(\psi \mid \theta_i)} \right\}.$$

Set

$$\theta_{i+1} = \begin{cases} \psi & \text{with probability } r \\ \theta_i & \text{with probability } 1 - r \end{cases}$$

Boges numerator

- Metropolis-Hastings algorithm generates a sequence $\theta^{_{(1)}}, \ldots,$ of dependent or correlated θ values.
 - e.g., θ_{i+1} is correlated with θ_i because ψ has been rejected.
- Also, $\theta^{(1)},\ldots$, is Markov chain since each ψ is generated from $q(\psi\mid\theta_i)$ that depends on the last accepted value θ_i .
- In practice we cannot run the Markov chain forever but for some large number of steps N.

- But we can still use the sample $\theta^{(i)}$, $i=1,2,\ldots,N$ to make inferences about the posterior.
- Under mild conditions, the empirical distribution of $\theta^{(i)}$, $i=1,2,\ldots,N$ will approximate well the posterior for large N.
- We can view $\theta^{(i)}$, $i=1,2,\ldots,N$ as a sample from the posterior $p(\theta|y)$.
- Hence, we can approximate posterior means, quantiles and other posterior quantities of interest using $\{\theta^{(1)}, \dots, \theta^{(N)}\}$ for large N.

Example: binomial data/beta prior

- Let $k = 12 \sim \text{binomial}(40, q)$, where q is the probability of success.
- $q \sim \mathsf{beta}(2,2)$.
 - ① Apply the Metropolis-Hastings algorithm to simulate from the posterior p(q|k) using normal proposal distribution with standard deviation b=0.05.
 - Plot the histogram of the chain and compare it with the true posterior
 - Ompute the sample posterior mean, sample posterior median and sample equal-tail interval and compare with the true posterior summaries.

Example: beta prov/binomial data. Likelihood: $\rho(x|z) \sim \binom{n}{x} 2^x (1-z)^{n-x}$. prior: p(2) ~ beta (aB) The posterior, p(2/x), is p(zlx) a prior x li Kelihoud $= \rho(e) \times \rho(x|e)$ $= \frac{1}{Beta(a|B)} 2^{a-1} (1-e)^{B-1} (x) e^{x} (1-e)^{n-x}$ $= \frac{1}{Beta(a|B)} 2^{a-1} (1-e)^{B-1} (x) e^{x} (1-e)^{n-x}$ Start with 27 randomly. For each in (1) Generale $\psi \sim N(2i \cdot b^2)$ ② Compute the acceptance pubability $\gamma = \min \begin{cases} 1, \frac{g(\psi)}{g(2i)} \frac{2(2i+\psi)}{g(2i)} \end{cases}$ (Symmetic) $= min \begin{cases} 1, \frac{\psi^{\alpha-i}(1-\psi)^{\beta-i}\psi^{x}(7-\psi)^{n-x}}{2^{i^{\alpha-i}}(1-2i)^{\beta-i}2^{i}} \end{cases}$ 3) Let unu [vii]. (fux y, then Zitt= Y. Ofherwise, Ziti=Zi.

Working on the log scale

The likelihood is typically a product of many terms.

$$p(y \mid \theta) = \prod_{i=1}^{n} p(y_i \mid \theta)$$

- For numerical stability, we usually do the computations using the log of the posterior density.
- So calculate

Symmetric MH using the log scale

- Define $\mathcal{L}(\theta) = \log (p(\theta) \ p(y \mid \theta)) = \log (p(\theta)) + \log (p(y \mid \theta))$, the log of the posterior density (up to a constant).
- To work on the log scale, the part of the algorithm with the acceptance probability changes.
- Define

$$\delta = \min (0, \mathcal{L}(\psi) - \mathcal{L}(\theta_{i-1}))$$

• Generate $u \sim \mathsf{Uniform}(0,1)$

Set

$$\underline{\theta_{i+1}} = \begin{cases} \psi & \text{if } \underline{\log(u)} < \delta \\ \theta_i & \text{otherwise} \end{cases}$$

enbability on the log-scale

If the proposal is symmetric, then the probability of occeptonce is $Y=min \begin{cases} 1, \frac{g(\gamma)}{g(0i)} \end{cases} = min \begin{cases} 1, \frac{p(\gamma|p|y|\gamma)}{p(0i|p|y|0i)} \end{cases}$ on the loy-scale, ve compute $S=min > 0, \frac{\log |g||\psi||}{|g||\partial c||}$ =min }0,1099(4)-1099(00) } - min ollog blattod bl =min {0, L(p)-L(0i) } (f y= (y11., yn) ;id p(y10), then $[\log \rho(y|\theta) = \log \prod_{c=1}^{n} \rho(y;l\theta) - \sum_{c=1}^{n} \log \rho(y;l\theta)$

Example: Normal example with known variance

- Y_1, \ldots, Y_n iid from $N(\theta, \sigma^2)$ where σ^2 is known.
- $\theta \sim N(\mu, \tau^2)$ with τ^2 known. On δ θ Thous
- Apply the Metropolis-Hastings algorithm on the log-scale to simulate from the posterior $p(\theta|y_1,\ldots,y_n)$ after observing $Y=y=(y_1,\ldots,y_n)$.
- Use $q(\psi \mid \theta) \sim N(\theta, b^2)$ with b = 2, and $q(\psi \mid \theta) \sim U(\theta 4, \theta + 4)$.

Example: Normal/Normal 971. 4N /g N(0,03) 0~N(p120) MH Set 07 randomly. For each 0>7, 1) Conerute $\Psi \sim N(\partial i_1 b^2)$ 2) Compute the probability of acceptance 5=min 80,2(41-210:13) Where $L(\psi) = (og p(\psi) + (og p(y/\psi))$ $= \log \rho(\gamma) + \sum_{i=1}^{N} \log \rho(\gamma i | \gamma)$ where $p(y) = \frac{1}{\sqrt{2012}} \exp \left\{-\frac{(\cancel{0} - \cancel{1})^2}{\cancel{0} + \cancel{1}}\right\}$

where $\rho(\gamma) = \frac{1}{\sqrt{2\pi^2}} \exp\left\{-\frac{(y_i - y_i)^2}{2\tau^2}\right\}$ $\rho(y_i|\gamma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y_i - y_i)^2}{2\sigma^2}\right\}$

3 Un U [OII]. [f log (U) < 8 (Set Din = Y)
Ofherwise Din = Di

Board example: binomial data/beta prior

- Let $k = 12 \sim \text{binomial}(40, q)$, where q is the probability of success.
- $q \sim \text{beta}(2,2)$.
- Apply the Metropolis-Hastings algorithm on the log-scale to simulate from the posterior p(q|k) using normal proposal distribution with standard deviation b=0.06.