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Today’s agenda

Today’s lecture

Review

Metropolis-Hastings in Bayesian inference to generate samples from

the posterior pdf.
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MH for Bayesian inference

Goal: Generate a sample ◊1, ◊2, . . . from the posterior pdf, p(◊ | y).

p(◊ | y) is called the target distribution.

Last time we saw that posterior densities can be complicated when

not using a conjugate prior distribution.

It is di�cult to find the normalising constant with a non-conjugate

prior distribution, and hence we cannot simulate directly from

p(◊ | y).
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MH for Bayesian inference

In these cases, MCMC are helpful.

Metropolis-Hastings is a special case of a MCMC that can generate

a sample ◊1, ◊2, . . . that is approximately from p(◊ | y).

The sample ◊1, ◊2, . . . is a Markov chain whose distribution

converges to p(◊ | y) (under some conditions).
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Metropolis-Hastings algorithm

The algorithm constructs ◊1, ◊2, . . . as follows.

Start with arbitrary ◊1. Suppose we have generated {◊1, . . . , ◊i}. To

generate ◊i+1 do the following

1 Generate a proposal random variable Â from distribution q(Â | ◊i).
2 Compute the acceptance probability

r = min
⇢

1,
p(Â | y)q(◊i | Â)
p(◊i | y)q(Â | ◊i)

�
.

3 Set

◊i+1 =
(

Â with probability r,

◊i with probability 1 ≠ r.

In practice, generate U ≥ U [0, 1]. If U < r, set ◊i+1 = Â, otherwise

set ◊i+1 = ◊i.
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Metropolis-Hastings algorithm terminology

q is the proposal distribution: At each step, we propose a new rv Â
using the conditional distribution q(· | ◊i) that depends on ◊i (not

on the past).

MH accepts Â with probability

r = min
⇢

1,
p(Â | y)q(◊i | Â)
p(◊i | y)q(Â | ◊i)

�

called the acceptance probability.

r reflects how likely it is that Â is from p(◊ | y).
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Symmetric Metropolis-Hastings algorithm

The simplest case uses a symmetric proposal distribution, that is

q(Â | ◊i) = q(◊i | Â).

In this case, the acceptance probability simplifies to

r = min
⇢

1,
p(Â | y)
p(◊i | y)

�
.

Does not involve the proposal density at all.

Some common examples of symmetric q: Â ≥ N(◊, b2),
Â ≥ U [◊ ≠ a, ◊ + a] for some a > 0
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Metropolis-Hastings algorithm for Bayesian inference

In Bayesian inference, the posterior density is

p(◊ | y) = p(◊) p(y | ◊)R
p(◊) p(y | ◊) d◊

= p(◊) p(y | ◊)
T

.

It’s di�cult to find the normalizing constant

T =
Z

p(◊) p(y | ◊) d◊.

We don’t need to find this: The acceptance probability does not
depend on the normalizing constant

r = min
⇢

1,
p(Â | y)q(◊i | Â)
p(◊i | y)q(Â | ◊i)

�

= min
⇢

1,
p(Â) p(y | Â)
p(◊i) p(y | ◊i)

q(◊i | Â)
q(Â | ◊i)

�
.

so we only need to know p(◊ | y) up to a constant.
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Metropolis-Hastings algorithm for Bayesian inference

Define g(◊) = p(◊) p(y | ◊), the non-normalized posterior density or the

Bayes numerator.

Generate ◊1, ◊2, . . . as follows:

Start with ◊1, where g(◊1) > 0.

For each i > 1:

Generate Â ≥ q(Â | ◊i).
Let

r = min
⇢

1,
g(Â)
g(◊i)

q(◊i | Â)
q(Â | ◊i)

�
.

Set

◊i+1 =
(

Â with probability r

◊i with probability 1 ≠ r
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Metropolis-Hastings algorithm for Bayesian inference

Metropolis-Hastings algorithm generates a sequence ◊(1), . . . , of

dependent or correlated ◊ values.

- e.g., ◊i+1 is correlated with ◊i because Â has been rejected.

Also, ◊(1), . . . , is Markov chain since each Â is generated from

q(Â | ◊i) that depends on the last accepted value ◊i.

In practice we cannot run the Markov chain forever but for some

large number of steps N .
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Metropolis-Hastings algorithm for Bayesian inference

But we can still use the sample ◊(i)
, i = 1, 2, . . . , N to make

inferences about the posterior.

Under mild conditions, the empirical distribution of ◊(i)
,

i = 1, 2, . . . , N will approximate well the posterior for large N .

We can view ◊(i)
, i = 1, 2, . . . , N as a sample from the posterior

p(◊|y).

Hence, we can approximate posterior means, quantiles and other

posterior quantities of interest using {◊(1), . . . , ◊(N)} for large N .
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Example: binomial data/beta prior

Let k = 12 ≥ binomial(40, q), where q is the probability of success.

q ≥ beta(2, 2).

1 Apply the Metropolis-Hastings algorithm to simulate from the

posterior p(q|k) using normal proposal distribution with with

standard deviation b = 0.05.

2 Plot the histogram of the chain and compare it with the true

posterior

3 Compute the sample posterior mean, sample posterior median and

sample equal-tail interval and compare with the true posterior

summaries.
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Working on the log scale

The likelihood is typically a product of many terms.

p(y | ◊) =
nY

i=1
p(yi | ◊)

For numerical stability, we usually do the computations using the log

of the posterior density.

So calculate

log (p(y | ◊)) =
nX

i=1
log (p(yi | ◊))
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Symmetric MH using the log scale

Define L(◊) = log (p(◊) p(y | ◊)) = log (p(◊)) + log (p(y | ◊)),
the log of the posterior density (up to a constant).

To work on the log scale, the part of the algorithm with the

acceptance probability changes.

Define

” = min (0, L(Â) ≠ L(◊i≠1))

Generate u ≥ Uniform(0, 1)
Set

◊i+1 =
(

Â if log(u) < ”

◊i otherwise
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Example: Normal example with known variance

Y1, . . . , Yn iid from N(◊, ‡2) where ‡2
is known.

◊ ≥ N(µ, · 2) with · 2
known.

Apply the Metropolis-Hastings algorithm on the log-scale to

simulate from the posterior p(◊|y1, . . . , yn) after observing

Y = y = (y1, . . . , yn).

Use q(Â | ◊) ≥ N(◊, b2) with b = 2, and q(Â | ◊) ≥ U(◊ ≠ 4, ◊ + 4).
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Board example: binomial data/beta prior

Let k = 12 ≥ binomial(40, q), where q is the probability of success.

q ≥ beta(2, 2).

Apply the Metropolis-Hastings algorithm on the log-scale to

simulate from the posterior p(q|k) using normal proposal distribution

with standard deviation b = 0.06.
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