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Today's lecture

o Review

o Metropolis-Hastings in Bayesian inference to generate samples from
the posterior pdf.
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MH for Bayesian inference

o Goal: Generate a sample 61, 0s,... from the posterior pdf, p(6 | y).
o p(0 | y) is called the target distribution.

o Last time we saw that posterior densities can be complicated when
not using a conjugate prior distribution.

o It is difficult to find the normalising constant with a non-conjugate
prior distribution, and hence we cannot simulate directly from

p(@1y).
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MH for Bayesian inference

@ In these cases, MCMC are helpful.

@ Metropolis-Hastings is a special case of a MCMC that can generate
a sample 61,05, ... that is approximately from p(f | y).

@ The sample 01,05, ... is a Markov chain whose distribution
converges to p(f | y) (under some conditions).

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Metropolis-Hastings algorithm

The algorithm constructs 61,60, ... as follows.

Start with arbitrary 6;. Suppose we have generated {0,,...,6,}. To
generate 0, ., do the following

@ Generate a proposal random variable ¢ from distribution g(v | 6;).
@ Compute the acceptance probability

= min 1, 20100010}
"p0i ly)a(]6,) )

@ Set
1 with probability 7,
Oit1 = . o\
0; with probability 1 — 7.

In practice, generate U ~ U[0,1]. If U < r, set 6,11 = 1), otherwise
set 9i+1 = 0;.
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Metropolis-Hastings algorithm terminology

@ q is the proposal distribution: At each step, we propose a new rv 1
using the conditional distribution ¢(- | ;) that depends on 6, (not
on the past).

@ MH accepts ¥ with probability

= min {1,210 1)}
"p0i [ y)a( | 6:)

called the acceptance probability.

o r reflects how likely it is that ¢ is from p(6 | y).

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Symmetric Metropolis-Hastings algorithm

@ The simplest case uses a symmetric proposal distribution, that is

o In this case, the acceptance probability simplifies to

T:min{l’m}'

o Does not involve the proposal density at all.

@ Some common examples of symmetric ¢: ¢ ~ N(6,b?),
P ~ U0 — a,0 + a] for some a > 0
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Metropolis-Hastings algorithm for Bayesian inference

o In Bayesian inference, the posterior density is

p( ) (y|9) _p®) ply | 6)

o It's difficult to find the normalizing constant

zzi/mmp@|md9

@ We don't need to find this: The acceptance probability does not
depend on the normalizing constant

¢ i {1, O L0019

90 | 9)a(d]6)

— in {3, A8 | )01 9]
p(6) p(y 1 0) (0 ]6,)

@ so we only need to know p(f | y) up to a constant.
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Metropolis-Hastings algorithm for Bayesian inference

Define g(0) = p(0) p(y | 8), the non-normalized posterior density or the
Bayes numerator.

Generate 61,05, ... as follows:
o Start with 61, where g(61) > 0.

o For each 7 > 1:
o Generate ¢ ~ q( | ;).

o Let
. min{l 9(¥) q(0 | 1/})}
"9(6:) a(y 16:) S

o Set
1 with probability r
Oit1 = . "
0; with probability 1 —r
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Metropolis-Hastings algorithm for Bayesian inference

@ Metropolis-Hastings algorithm generates a sequence ;... of
dependent or correlated 6 values.
- e.g., 0, is correlated with 6, because 1) has been rejected.

o Also, 8, ..., is Markov chain since each 1 is generated from
q(¢ | 0,) that depends on the last accepted value 6,.

o In practice we cannot run the Markov chain forever but for some
large number of steps V.
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Metropolis-Hastings algorithm for Bayesian inference

o But we can still use the sample 8V, i =1,2,..., N to make
inferences about the posterior.

o Under mild conditions, the empirical distribution of 8¢,

i=1,2,..., N will approximate well the posterior for large N.
o We can view 6, ¢ =1,2,..., N as a sample from the posterior
p(Oly).

@ Hence, we can approximate posterior means, quantiles and other
posterior quantities of interest using {8, ..., 6"} for large N.
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Example: binomial data/beta prior

o Let k = 12 ~ binomial(40, q), where g is the probability of success.
o g ~ beta(2,2).

@ Apply the Metropolis-Hastings algorithm to simulate from the
posterior p(g|k) using normal proposal distribution with with
standard deviation b = 0.05.

@ Plot the histogram of the chain and compare it with the true
posterior

@ Compute the sample posterior mean, sample posterior median and
sample equal-tail interval and compare with the true posterior
summaries.
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-ng on the log scale

o The likelihood is typically a product of many terms.

ply | 0) = Hp(yz- | 6)

o For numerical stability, we usually do the computations using the log
of the posterior density.

o So calculate

log (p(y | 0)) Zlog (i 19))
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Symmetric MH using the log scale

Define £(6) = log (p(6) p(y | 0)) = log (p(#)) + log (p(y | 0)),
the log of the posterior density (up to a constant).

©

©

To work on the log scale, the part of the algorithm with the
acceptance probability changes.

o Define

6 = min (0, L(¢)) — L(6;-1))

Generate u ~ Uniform(0, 1)

©

o Set

0iv1 =

{1/; if log(u) < &

0; otherwise
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Example: Normal example with known variance

0 Y,,...,Y, iid from N(6,0%) where o2 is known.

0 6 ~ N(u,7?) with 72 known.

@ Apply the Metropolis-Hastings algorithm on the log-scale to
simulate from the posterior p(f|y,,...,y,) after observing

Y=y= W Y)

o Use q(v | 0) ~ N(0,b*) withb=2, and q(¢) | 0) ~U(0 — 4,0 + 4).
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Board example: binomial data/beta prior

o Let kK = 12 ~ binomial(40, q), where g is the probability of success.
o g ~ beta(2,2).

o Apply the Metropolis-Hastings algorithm on the log-scale to
simulate from the posterior p(¢|k) using normal proposal distribution
with standard deviation b = 0.06.
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