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Today’s agenda

Today’s lecture

Review

Metropolis-Hastings in Bayesian inference to generate samples from
the posterior pdf.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



MH for Bayesian inference

Goal: Generate a sample θ1, θ2, . . . from the posterior pdf, p(θ | y).

p(θ | y) is called the target distribution.

Last time we saw that posterior densities can be complicated when
not using a conjugate prior distribution.

It is difficult to find the normalising constant with a non-conjugate
prior distribution, and hence we cannot simulate directly from
p(θ | y).
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MH for Bayesian inference

In these cases, MCMC are helpful.

Metropolis-Hastings is a special case of a MCMC that can generate
a sample θ1, θ2, . . . that is approximately from p(θ | y).

The sample θ1, θ2, . . . is a Markov chain whose distribution
converges to p(θ | y) (under some conditions).
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Metropolis-Hastings algorithm

The algorithm constructs θ1, θ2, . . . as follows.

Start with arbitrary θ1. Suppose we have generated {θ1, . . . , θi}. To
generate θi+1 do the following

1 Generate a proposal random variable ψ from distribution q(ψ | θi).
2 Compute the acceptance probability

r = min
{

1, p(ψ | y)q(θi | ψ)
p(θi | y)q(ψ | θi)

}
.

3 Set

θi+1 =
{
ψ with probability r,
θi with probability 1− r.

In practice, generate U ∼ U [0, 1]. If U < r, set θi+1 = ψ, otherwise
set θi+1 = θi.
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Metropolis-Hastings algorithm terminology

q is the proposal distribution: At each step, we propose a new rv ψ
using the conditional distribution q(· | θi) that depends on θi (not
on the past).

MH accepts ψ with probability

r = min
{

1, p(ψ | y)q(θi | ψ)
p(θi | y)q(ψ | θi)

}
called the acceptance probability.

r reflects how likely it is that ψ is from p(θ | y).
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Symmetric Metropolis-Hastings algorithm

The simplest case uses a symmetric proposal distribution, that is
q(ψ | θi) = q(θi | ψ).

In this case, the acceptance probability simplifies to

r = min
{

1, p(ψ | y)
p(θi | y)

}
.

Does not involve the proposal density at all.

Some common examples of symmetric q: ψ ∼ N(θ, b2),
ψ ∼ U [θ − a, θ + a] for some a > 0
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Metropolis-Hastings algorithm for Bayesian inference

In Bayesian inference, the posterior density is

p(θ | y) = p(θ) p(y | θ)∫
p(θ) p(y | θ) dθ

= p(θ) p(y | θ)
T

.

It’s difficult to find the normalizing constant

T =
∫
p(θ) p(y | θ) dθ.

We don’t need to find this: The acceptance probability does not
depend on the normalizing constant

r = min
{

1, p(ψ | y)q(θi | ψ)
p(θi | y)q(ψ | θi)

}
= min

{
1, p(ψ) p(y | ψ)
p(θi) p(y | θi)

q(θi | ψ)
q(ψ | θi)

}
.

so we only need to know p(θ | y) up to a constant.
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Metropolis-Hastings algorithm for Bayesian inference

Define g(θ) = p(θ) p(y | θ), the non-normalized posterior density or the
Bayes numerator.

Generate θ1, θ2, . . . as follows:
Start with θ1, where g(θ1) > 0.
For each i > 1:

Generate ψ ∼ q(ψ | θi).
Let

r = min
{

1, g(ψ)
g(θi)

q(θi | ψ)
q(ψ | θi)

}
.

Set

θi+1 =
{
ψ with probability r
θi with probability 1− r
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Metropolis-Hastings algorithm for Bayesian inference

Metropolis-Hastings algorithm generates a sequence θ(1), . . . , of
dependent or correlated θ values.
- e.g., θi+1 is correlated with θi because ψ has been rejected.

Also, θ(1), . . . , is Markov chain since each ψ is generated from
q(ψ | θi) that depends on the last accepted value θi.

In practice we cannot run the Markov chain forever but for some
large number of steps N .
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Metropolis-Hastings algorithm for Bayesian inference

But we can still use the sample θ(i), i = 1, 2, . . . , N to make
inferences about the posterior.

Under mild conditions, the empirical distribution of θ(i),
i = 1, 2, . . . , N will approximate well the posterior for large N .

We can view θ(i), i = 1, 2, . . . , N as a sample from the posterior
p(θ|y).

Hence, we can approximate posterior means, quantiles and other
posterior quantities of interest using {θ(1), . . . , θ(N)} for large N .
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Example: binomial data/beta prior

Let k = 12 ∼ binomial(40, q), where q is the probability of success.
q ∼ beta(2, 2).

1 Apply the Metropolis-Hastings algorithm to simulate from the
posterior p(q|k) using normal proposal distribution with with
standard deviation b = 0.05.

2 Plot the histogram of the chain and compare it with the true
posterior

3 Compute the sample posterior mean, sample posterior median and
sample equal-tail interval and compare with the true posterior
summaries.
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Working on the log scale

The likelihood is typically a product of many terms.

p(y | θ) =
n∏

i=1
p(yi | θ)

For numerical stability, we usually do the computations using the log
of the posterior density.
So calculate

log (p(y | θ)) =
n∑

i=1
log (p(yi | θ))
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Symmetric MH using the log scale

Define L(θ) = log (p(θ) p(y | θ)) = log (p(θ)) + log (p(y | θ)),
the log of the posterior density (up to a constant).
To work on the log scale, the part of the algorithm with the
acceptance probability changes.
Define

δ = min (0,L(ψ)− L(θi−1))

Generate u ∼ Uniform(0, 1)
Set

θi+1 =
{
ψ if log(u) < δ

θi otherwise
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Example: Normal example with known variance

Y1, . . . , Yn iid from N(θ, σ2) where σ2 is known.

θ ∼ N(µ, τ 2) with τ 2 known.

Apply the Metropolis-Hastings algorithm on the log-scale to
simulate from the posterior p(θ|y1, . . . , yn) after observing
Y = y = (y1, . . . , yn).

Use q(ψ | θ) ∼ N(θ, b2) with b = 2, and q(ψ | θ) ∼ U(θ − 4, θ + 4).
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Board example: binomial data/beta prior

Let k = 12 ∼ binomial(40, q), where q is the probability of success.
q ∼ beta(2, 2).

Apply the Metropolis-Hastings algorithm on the log-scale to
simulate from the posterior p(q|k) using normal proposal distribution
with standard deviation b = 0.06.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods


