Lecture 9B MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's lecture

Review

• Metropolis-Hastings in Bayesian inference to generate samples from the posterior pdf.

- **Goal:** Generate a sample $\theta_1, \theta_2, \ldots$ from the posterior pdf, $p(\theta \mid y)$.
- $p(\theta \mid y)$ is called the target distribution.
- Last time we saw that posterior densities can be complicated when not using a conjugate prior distribution.
- It is difficult to find the normalising constant with a non-conjugate prior distribution, and hence we cannot simulate directly from $p(\theta \mid y)$.

- In these cases, MCMC are helpful.
- Metropolis-Hastings is a special case of a MCMC that can generate a sample $\theta_1, \theta_2, \ldots$ that is **approximately** from $p(\theta \mid y)$.
- The sample $\theta_1, \theta_2, \ldots$ is a Markov chain whose distribution converges to $p(\theta \mid y)$ (under some conditions).

Metropolis-Hastings algorithm

The algorithm constructs $\theta_1, \theta_2, \ldots$ as follows.

Start with arbitrary θ_1 . Suppose we have generated $\{\theta_1, \ldots, \theta_i\}$. To generate θ_{i+1} do the following

() Generate a proposal random variable ψ from distribution $q(\psi \mid \theta_i)$.

② Compute the acceptance probability

$$r = \min\left\{1, \frac{p(\psi \mid y)q(\theta_i \mid \psi)}{p(\theta_i \mid y)q(\psi \mid \theta_i)}\right\}.$$

3 Set

$$\theta_{i+1} = \begin{cases} \psi & \text{with probability } r, \\ \theta_i & \text{with probability } 1 - r. \end{cases}$$

In practice, generate $U \sim U[0,1]$. If U < r, set $\theta_{i+1} = \psi$, otherwise set $\theta_{i+1} = \theta_i$.

- q is the proposal distribution: At each step, we propose a new rv ψ using the conditional distribution $q(\cdot \mid \theta_i)$ that depends on θ_i (not on the past).
- MH accepts ψ with probability

$$r = \min\left\{1, \frac{p(\psi \mid y)q(\theta_i \mid \psi)}{p(\theta_i \mid y)q(\psi \mid \theta_i)}\right\}$$

called the acceptance probability.

• r reflects how likely it is that ψ is from $p(\theta \mid y)$.

Symmetric Metropolis-Hastings algorithm

- The simplest case uses a symmetric proposal distribution, that is $q(\psi \mid \theta_i) = q(\theta_i \mid \psi)$.
- In this case, the acceptance probability simplifies to

$$r = \min\left\{1, \frac{p(\psi \mid y)}{p(\theta_i \mid y)}\right\}.$$

- Does not involve the proposal density at all.
- Some common examples of symmetric q: $\psi \sim N(\theta, b^2)$, $\psi \sim U[\theta a, \theta + a]$ for some a > 0

Metropolis-Hastings algorithm for Bayesian inference

• In Bayesian inference, the posterior density is

$$p(\theta \mid y) = \frac{p(\theta) p(y \mid \theta)}{\int p(\theta) p(y \mid \theta) d\theta} = \frac{p(\theta) p(y \mid \theta)}{T}.$$

It's difficult to find the normalizing constant

$$T = \int p(\theta) \ p(y \mid \theta) \ d\theta.$$

• We don't need to find this: The acceptance probability **does not depend on the normalizing constant**

$$r = \min\left\{1, \frac{p(\psi \mid y)q(\theta_i \mid \psi)}{p(\theta_i \mid y)q(\psi \mid \theta_i)}\right\}$$
$$= \min\left\{1, \frac{p(\psi) p(y \mid \psi)}{p(\theta_i) p(y \mid \theta_i)} \frac{q(\theta_i \mid \psi)}{q(\psi \mid \theta_i)}\right\}.$$

• so we only need to know $p(\theta \mid y)$ up to a constant.

Define $g(\theta) = p(\theta) p(y \mid \theta)$, the non-normalized posterior density or the Bayes numerator.

```
 \begin{array}{l} \text{Generate } \theta_1, \theta_2, \dots \text{ as follows:} \\ \bullet \text{ Start with } \theta_1, \text{ where } g(\theta_1) > 0. \\ \bullet \text{ For each } i > 1: \\ \bullet \text{ Generate } \psi \sim q(\psi \mid \theta_i). \\ \bullet \text{ Let} \\ r = \min \left\{ 1, \frac{g(\psi)}{g(\theta_i)} \frac{q(\theta_i \mid \psi)}{q(\psi \mid \theta_i)} \right\}. \\ \bullet \text{ Set} \\ \theta_{i+1} = \begin{cases} \psi & \text{with probability } r \\ \theta_i & \text{with probability } 1 - r \end{cases}
```

- Metropolis-Hastings algorithm generates a sequence θ⁽¹⁾,..., of dependent or correlated θ values.
 - e.g., θ_{i+1} is correlated with θ_i because ψ has been rejected.
- Also, $\theta^{(1)}, \ldots$, is Markov chain since each ψ is generated from $q(\psi \mid \theta_i)$ that depends on the last accepted value θ_i .
- In practice we cannot run the Markov chain forever but for some large number of steps N.

Metropolis-Hastings algorithm for Bayesian inference

- But we can still use the sample $\theta^{(i)}$, i = 1, 2, ..., N to make inferences about the posterior.
- Under mild conditions, the empirical distribution of $\theta^{(i)}$, i = 1, 2, ..., N will approximate well the posterior for large N.
- We can view $\theta^{(i)}$, i = 1, 2, ..., N as a sample from the posterior $p(\theta|y)$.
- Hence, we can approximate posterior means, quantiles and other posterior quantities of interest using {θ⁽¹⁾,...,θ^(N)} for large N.

- Let k = 12 ~ binomial(40, q), where q is the probability of success.
 q ~ beta(2, 2).
 - (a) Apply the Metropolis-Hastings algorithm to simulate from the posterior p(q|k) using normal proposal distribution with with standard deviation b = 0.05.
 - Plot the histogram of the chain and compare it with the true posterior
 - Ocmpute the sample posterior mean, sample posterior median and sample equal-tail interval and compare with the true posterior summaries.

• The likelihood is typically a product of many terms.

$$p(y \mid \theta) = \prod_{i=1}^{n} p(y_i \mid \theta)$$

- For numerical stability, we usually do the computations using the log of the posterior density.
- So calculate

$$\log \left(p(y \mid \theta) \right) = \sum_{i=1}^{n} \log \left(p(y_i \mid \theta) \right)$$

- Define $\mathcal{L}(\theta) = \log (p(\theta) p(y \mid \theta)) = \log (p(\theta)) + \log (p(y \mid \theta))$, the log of the posterior density (up to a constant).
- To work on the log scale, the part of the algorithm with the acceptance probability changes.

Define

$$\delta = \min\left(0, \mathcal{L}(\psi) - \mathcal{L}(\theta_{i-1})\right)$$

• Generate
$$u \sim \mathsf{Uniform}(0,1)$$

Set

$$\theta_{i+1} = \begin{cases} \psi & \text{ if } \log(u) < \delta \\ \theta_i & \text{ otherwise} \end{cases}$$

- Y_1, \ldots, Y_n iid from $N(\theta, \sigma^2)$ where σ^2 is known.
- $\theta \sim N(\mu, \tau^2)$ with τ^2 known.
- Apply the Metropolis-Hastings algorithm on the log-scale to simulate from the posterior $p(\theta|y_1, \ldots, y_n)$ after observing $Y = y = (y_1, \ldots, y_n)$.
- Use $q(\psi \mid \theta) \sim N(\theta, b^2)$ with b = 2, and $q(\psi \mid \theta) \sim U(\theta 4, \theta + 4)$.

- Let k = 12 ∼ binomial(40, q), where q is the probability of success.
 q ∼ beta(2, 2).
- Apply the Metropolis-Hastings algorithm on the log-scale to simulate from the posterior p(q|k) using normal proposal distribution with standard deviation b = 0.06.