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An undirected graph is a pair G = (V, E)

Vertex

V are the vertices

L = {x,y | (x,y) € VP AX # y} are the edges
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What is a graph?

A weighted graph is a pair G = (V, E)

Vertex

V are the vertices

L = {x,y | (x,y) € VP AX # y} are the edges

lq A number called weight is assigned to each edge
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What is a graph?
Example
Vertices = towns

Edges = town connections

Weights = distances between towns

©Wikimedia commons




Incidence matrix

For a (weighted) graph (with weights w) we define a so-called incidence matrix

M, € RIEXIVE where | E | denotes the number of edges and | V| the number
of vertices, as

w,  1fv=i
(Mw)ev .= — Wev ]fv =] ’
lq 0 otherwise

!4 where every edge e = (i, j) connects vertices i and j, with i > .




Incidence matrix
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Another example: finite differences
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What is a graph?

Another example: finite differences

1

% Every vertex is connected only to one other vertex

1

— The weight is a constant factor (1/h)?
( | h
h |
) O

Suppose every vertex represents f(x;):




What is a graph?

f(xi+1) _f(xi)

fx) ~ . can be written as matrix-vector multiplication
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What is a graph?

f(xi+1) _f(xi)

fx) ~ . can be written as matrix-vector multiplication
fxp) 1 1 0 .. 0 o)/
fe)f 1o -1 1 ... 0 0] fx)
: h : : :
f/(xd) 0 0 .. 0O =1 1 f(_xd+1)

!A{ This is our incidence matrix




Graph Laplacian

Based on the finite difference approximation

-1 1 0 .. 0 0
1 _
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it is natural to define second-order finite differences (or Laplacians in higher
lq dimensions) as
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Graph Laplacian

Based on the finite difference approximation

-1 1 0 .. 0 0
1 _
oo Lfo -1 1 0 of
0 0 0 -1 1

it is natural to define second-order finite differences (or Laplacians in higher
lq dimensions) as

' Li=M'M:
h 7 h
lp We can define the same for arbitrary graphs!




Graph Laplacian

[VIXIV]

The graph-Laplacian L, € R is defined as

L =MM,.
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Graph Laplacian

[VIX|VI

The graph-Laplacian L, € R is defined as

L =MM,.

68 —15 =53 0 0 0 0
—-15 101 -40 O —-46 O 0
-53 =40 141 -31 O =17 O

0 o -31 71 -3 =29 =8

0O —-46 O -3 60 0 -—11

0 0 =17 =29 0 36 —40

0 0 0 -8 =11 =40 359




Graph Laplacian

IVIXIVl is defined also as

The graph-Laplacian L, € |

Degree matrix

Adjacency matrix
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Graph Laplacian

VIXIVI'is defined alsoas L,=D,—A,

The graph-Laplacian L, € |

68 0 0 0 0O O O
0 101 0 0 0 0 O
0 0 141 0 0 0 O
D=0 0 0 71 0 0 0| Degree matrix
0 0 0 0 60 0 O
0 0 0 0 0 8 O
0 0 0 0 0 0 59
0 1553 0 0 0 O
15 0 40 0 46 0 O
53 40 0 31 0 7 0
A=[0 0 31 0 3 8 Adjacency matrix
0 46 0 3 0 0
0 0 17 29 0 o
0 0 0 8 11




Semi-supervised learning

We can use incidence matrices and graph-Laplacians to model and exploit similarities
in a dataset

b
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Interpolation

For each x; in 1, we know
the correspondent y. @




Interpolation

In general we don’t know the underling function, how can we connect the dots?
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Interpolation

Linear interpolation
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Interpolation

Smoother interpolation
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Interpolation

One way of formulating this problem mathematically uses the ideas of optimization:

{m}in E(y) subject to PLy) =y, VjeL
Yitiel

We can find the new points by minimizing a certain energy function, subject to the
constrains of the points y we know

Here, P12 denotes the projection of a vector with indices in /; onto a vector
lﬂ with indices in /[,

4 How to choose £ to interpolate?
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strange behaviors (i.e., oscillation, large variations)
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Interpolation

We cannot use the MSE! Since, we miss the ground truth for the new y

We want to ensure that the values we are trying to estimate (interpolate) do not have
strange behaviors (i.e., oscillation, large variations)

Proposal:

lﬂ E(y)= || M.y with M

' o O ... 0 =1 1
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Interpolation

A simple example might help us understand why this is a good idea
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Interpolation

Imagine that we are given these two points




Interpolation

Imagine that we are given these two points

b

: 4 We would add another point, between Xx; and X5, thus interpolating
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The goal is to find y; (in interpolation x5 is in the middle between the other two
points)
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Interpolation

The goal is to find y; (in interpolation x5 is in the middle between the other two
points)

Is it here?

ls{ Hence, y; =7
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We can now see how using the incidence matrix and minimising E might help
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We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?
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Interpolation

We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?

Y1
What is y ? y = [)’3]
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Given |
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Their product is

l. Hence, the proposed energy function becomes
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Interpolation

Given |
Iy :_(—1 1 o)

Their product is

l. Hence, the proposed energy function becomes

2 1
A{ E(y)= || M.y "= %) (3 =y + (0, — ¥3)°|
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Let’s put some numbers considering this scenario
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Let’s put some numbers considering this scenario

2

1
Ey)= | Myy |- =25 |05 =3+ 02— »)]
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Interpolation

Let’s put some numbers considering this scenario

2

1
Ey)= | Myy |- =25 |05 =3+ 02— »)]

» 25 1 13
E(y) = | MLy || ~—+—=—7

0 4 4 2
o
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Interpolation

Let’s put some numbers in this other scenario
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Let’s put some numbers in this other scenario
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Interpolation

Let’s put some numbers in this other scenario

2

1
Ey)= | Myy ||~ =5 |05 =3+ 02 = )]

E(y)= (| M.y 2~9+25=34

b
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Interpolation

Let’s put some numbers in this other scenario

2

1
Ey)= | Myy ||~ =5 |05 =3+ 02 = )]

E(y)= (| M.y 2~9+25=34

b

! ' What is the minimum value?




Interpolation

The min can be found getting the derivative and setting to zero!
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Interpolation

The min can be found getting the derivative and setting to zero!
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The min can be found getting the derivative and setting to zero!

|
Ety)= || M.y : = ﬁ [(Y3 — }’1)2 + (¥, — )’3)2]

h

VE(3) =23 —y) — 203 =) =0

Y1+
2

Y3 =

b

)




Interpolation

The min can be found getting the derivative and setting to zero!

|
Ety)= || M.y : = ﬁ [(Y3 — }’1)2 + (¥, — )’3)2]

VE(3) =23 —y) — 203 =) =0

Y1+
2

Y3 =
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Interpolation

The min can be found getting the derivative and setting to zero!

|
Ety)= || M.y : = ﬁ [(Y3 — }’1)2 + (¥, — )’3)2]

VE(3) =23 —y) — 203 =) =0

b

J The min is, not surprisingly, the point laying in the middle between the
two! This is why it is called interpolation!




Interpolation

So, it looks like that this energy function does the job!

: -1 1 0 .. 0 O
Ey)= || M.y with M%:% (3 -1 1 .. 0 (3 |
0 O 0 -1 1

b
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Interpolation

So, it looks like that this energy function does the job!

> -1 1 0 ... 0 O
R R with — My=—| 9 “h o 00
0 O 0 —1 1

b

!J How can we use this to solve the problem in general?
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= known
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Interpolation

We canwritey =P\, w+ P, v

= known

Thus we split the vector y in two parts, the first of unknown the second of known
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Interpolation

We canwritey =P\, w+ P, v

= known

Thus we split the vector y in two parts, the first of unknown the second of known

lq The two P are projectors

)
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Consider a simple case where we have only 2 known ys out of 5

)




Interpolation

Consider a simple case where we have only 2 known ys out of 5

y — Pll\IZW + PIZV

)




Interpolation

Consider a simple case where we have only 2 known ys out of 5

y — Pll\IZW + PIZV




Interpolation

Consider a simple case where we have only 2 known ys out of 5

y — Pll\IZW + PIZV




Interpolation

Consider a simple case where we have only 2 known ys out of 5

y — Pll\IZW + PIZV

~>
oSO = O O
o= O O O
—_— O O O O
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Consider a simple case where we have only 2 known ys out of 5

y=>P,
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\, W PIZV




Interpolation

Consider a simple case where we have only 2 known ys out of 5

y=>P,

1

\, W PIZV




Interpolation

Now, fromy =P;\, w+ P, v .

= known
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Interpolation

Now, fromy =P;\, w+ P, v

= known

The missing indices can be computed via

min

F {Wi}i611\12

)

M, <P11\12w 4 P,2V>




Interpolation

min M% (PII\IZW + PIZV)

(W) icli\I




Interpolation

min M% (PII\IZW + Ple)

(W) icli\I

This is a least-squares problem, for which we know the solution. Indeed we can re-
write

b
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Interpolation

min M% (PII\IZW + Ple)

(W) icli\I

This is a least-squares problem, for which we know the solution. Indeed we can re-
write

min M.P;\, W+ MiPpv *— min H XW +r H i

{Wi}iell \I {Wi}iell \I

(P11\12W + PIZV)

1
h

s
lﬂ 1n M

(Wi iel{\I

of




Interpolation

min M% (PII\IZW + Ple)

(W) icli\I

This is a least-squares problem, for which we know the solution. Indeed we can re-
write

2
. 2 , 2
(P,l\lzw + PIZV) = min M%Pll\lzw + M%PIZV = min H XW+r H

{Wi}iell \I {Wi}iell \I

1
h

lﬂ min M

(W) iel{\I

4 Matrices are different but the form is the same of the usual MSE (except for
the +!!)




min
(W) iel{\I

M, (P, +P,y)

2

Interpolation

The solution is then the normal equation with a minus on the right hand side

min
(W) iel{\I

2

: 2
min H XW4+r H
{Wi}iell\lz




Interpolation

The solution is then the normal equation with a minus on the right hand side
2
. . 2 . 2
min M% (P,l\lzw + Ple) = min M%Pll\lzw + M%PIZV = min H XW+r H

{Wi}iell \I» {Wi}iell \I» {Wi}iell \I

Normal equation

of




Interpolation

The solution is then the normal equation with a minus on the right hand side
2

. . 2 . 2
min M. (P,l\lzw + Ple) = min M.P;\w+MiP; v = min H XW+r H
{Wi}iell\lz " {Wi}iell\lz " " {Wi}iell\lz
Normal equation X'Xw=-X'r

of




Interpolation

The solution is then the normal equation with a minus on the right hand side
2

: : 2 : 2
min M. (P,\Iw+PIV) = min M.P;\w+MiP; v = min H XW+r H
7 1\2 2 7 A o T2
{Wi}iell\lz {Wi}iell\lz {Wi}iell\lz
Normal equation X'Xw=-X'r
Tyw — pT T _PpTl
X X —_ Pll\IQM%M%PII\IZ —_ Pll\lzL%Pll\IZ

of




Interpolation

The solution is then the normal equation with a minus on the right hand side

2
. . 2 . 2
min M% (P,l\lzw + Ple) = min M%Pll\bw + M%PIZV = min H XW+r H
{Wi}iell\lz {Wi}iell\lz {Wi}iell\lz
Normal equation X'Xw=-X'r
T T T _pT
X X Pll\IQM%M%PII\IZ Pll\lzL PIl\IZ
T T T T
J Pl Ly Py, W = —P],, MIM, P,y = —P] Ly Py,

known




Interpolation

Example ! 00- -
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4 “Training” set is very small, and since we don’t know the ground truth for
the others this a semi-supervised problem




Applications

The advantages of using this formulation is that it can be applied to points like we just
did, but also to data point for which you can define a similarity

b
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Actors similarity

Incidence matrix

(

Bl -5 0 0 0 5 0 \
E2 0 0 0 —5 5 0
E3 0 —9 0 0 0 9
B4 —8 0 0 8 0 0
E5 0 0 —6 0 0 6
E6 0 —6 6 0 0 0
BE7 0 0 —7 0 7 0
B. D. Howard C. Smith C. O’ Brian J. Chastain T. Swinton W. Ferrell /

Tilda Swinton

El: 25

E2: 25

Jessica Chastain

E7: 49

Bryce D. Howard

E5: 36

E6: 36

Conan O’Brian




Actors similarity

El: 25
Laplacian matrix
Bryce D. Howard
Tilda Swinton
89 0 0 —64 -25 0
0 117 —-36 0 0 —81 E5: 36

0O =36 121 O —-49 -36 E2: 25
—64 0 0 89 =25 0 '
—-25 0 =49 =25 99 0

0O -8 —-36 0 0 117

Ly = M, M, =

Jessica Chastain

Conan O’Brian

E6: 36

E7: 49




Actors similarity

El: 25

Bryce D. Howard
Tilda Swinton @

The task is: knowing the biological sex
of a small set of actors, and using their

similarity, predict the biological sex of the
others

b

Jessica Chastain

Conan O’Brian




Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male

(label 0)
|
Yinown = <O>
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Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male

(label 0)
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Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male

(label 0)
1
ykn()wn — <O>

6x2 2x1
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Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male

(label 0)
1
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Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male
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1
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Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male

(label 0)
1
ykn()wn — <O>

4x 1 4x6 6x6 6x2 2X1
T _ T
PI 1\ LW PI 1\ Y unknown = Pll \V5 Lw PIZYknown ’
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Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male

(label 0)
1
ykn()wn — <O>

6x4 4x1 4x6 6x6 6x2 2X1
T _ T
PI 1\ LW PI 1\ Y unknown = Pll \V5 Lw PIZYknown ’
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Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male

(label 0)
1
ykn()wn — <O>

6x6 6x4 4x1 4x6 6x6 6Xx2 2X1
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Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male

(label 0)
1
ykn()wn — <O>

4x6 6x6 6X4 4X1 4x6 6x6 6Xx2 2X1
PZ \V5 Lw Pll \/, YLmknown — = PZ\ I, Lw Plzyknown ’

)
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Actors similarity

0 0
0 0
0 0
1 0
0 0
0 1

lw Projects 2D vector in to 6D

)




Actors similarity

0 0
0 O 1 00000
0 O 010000
P, = T
L7 11 0 Ph\fz_oo1ooo
0 O 0000120
0 1

Projects 6D vector in to 4D selecting
the unknown targets

lw Projects 2D vector in to 6D

)




Actors similarity

PT — _PT

I\l LW PI 1\ Y unknown AV LW Plzyknown ’
0 0
00 100000
00 010000
P, — _
S R ve={0 01 0 0 0
00 000O0T1 0
0 1

Projects 6D vector in to 4D selecting

lq Projects 2D vector in to 6D the unknown targets

of




Actors similarity

Easy to find the solution

8 0 0 —25 64
0 117 -36 0 |. [0
0 —36 121 —-49| — | 0

95 0 —49 99 25

(O 8912 0.0840 0.2732 1 0.6128 O)

!A{ We can then impose a simple threshold >0.5 -> 1 <0.5 ->0




