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Edge
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What is a graph?
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A weighted graph is a pair G = (V, E)

 are the verticesV

 are the edgesE = {x, y | (x, y) ∈ V2 ∧ x ≠ y}

Graph

Vertex

Edge

A number called weight is assigned to each edge
9

16

1
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What is a graph?
Example

Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

Dunwich

46

3

15

40

17

40

29

811

31

53

©Wikimedia commons

Vertices = towns

Edges = town connections

Weights = distances between towns



Incidence matrix
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For a (weighted) graph (with weights ) we define a so-called incidence matrix
, where denotes the number of edges and  the number 

of vertices, as

w
Mw ∈ ℝ|E|×|V| |E | |V |

(Mw)ev :=
wev if v = i

− wev if v = j

0 otherwise

,

where every edge  connects vertices  and , with .e = (i, j) i j i > j



Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

Dunwich

46

3

15

40

17

40

29

811

31

53

1
2

3
4 5

6

7

6

Incidence matrix

Mw =

− 15 15 0 0 0 0 0

− 53 0 53 0 0 0 0

0 − 40 40 0 0 0 0

0 − 46 0 0 46 0 0

0 0 0 − 3 3 0 0

0 0 − 31 31 0 0 0

0 0 0 − 29 0 29 0

0 0 − 17 0 0 17 0

0 0 0 0 − 11 0 11

0 0 0 − 8 0 0 8

0 0 0 0 0 − 40 40

1 2 3 4 5 6 7
E1
E2
E3
E4
E5
E6
E6
E7
E8
E9
E10
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What is a graph?
Another example: finite differences

Every vertex is connected only to one other vertex
1
h2

1
h2

1
h2

The weight is a constant factor (1/h)2

Suppose every vertex represents :f(xi)
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What is a graph?

f′￼(xi) ≈
f(xi+1) − f(xi)

h
can be written as matrix-vector multiplication

f′￼(x1)
f′￼(x2)

⋮
f′￼(xd)

≈
1
h

−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋱ ⋮
0 0 … 0 −1 1

f(x1)
f(x2)

⋮
f(xd+1)
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What is a graph?

f′￼(xi) ≈
f(xi+1) − f(xi)

h
can be written as matrix-vector multiplication

f′￼(x1)
f′￼(x2)

⋮
f′￼(xd)

≈
1
h

−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋱ ⋮
0 0 … 0 −1 1

f(x1)
f(x2)

⋮
f(xd+1)

This is our incidence matrix



Graph Laplacian
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Based on the finite difference approximation

M1
h

=
1
h

−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋱ ⋮
0 0 … 0 −1 1

,

it is natural to define second-order finite differences (or Laplacians in higher 
dimensions) as

L 1
h

= M⊤
1
h
M1

h



Graph Laplacian

9

Based on the finite difference approximation

M1
h

=
1
h

−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋱ ⋮
0 0 … 0 −1 1

,

it is natural to define second-order finite differences (or Laplacians in higher 
dimensions) as

L 1
h

= M⊤
1
h
M1

h

We can define the same for arbitrary graphs!



10

Graph Laplacian
The graph-Laplacian  is defined asLw ∈ ℝ|V|×|V|

Lw := M⊤
wMw .
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Graph Laplacian
The graph-Laplacian  is defined asLw ∈ ℝ|V|×|V|

Lw := M⊤
wMw .

Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

Dunwich

46

3

15

40

17

40

29

811

31

53

Lw = M⊤
wMw =

68 −15 −53 0 0 0 0
−15 101 −40 0 −46 0 0
−53 −40 141 −31 0 −17 0

0 0 −31 71 −3 −29 −8
0 −46 0 −3 60 0 −11
0 0 −17 −29 0 86 −40
0 0 0 −8 −11 −40 59
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Graph Laplacian
The graph-Laplacian  is defined also asLw ∈ ℝ|V|×|V|

Degree matrix

Adjacency matrix
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Graph Laplacian
The graph-Laplacian  is defined also asLw ∈ ℝ|V|×|V|

Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

Dunwich

46

3

15

40

17

40

29

811

31

53

D =

68 0 0 0 0 0 0
0 101 0 0 0 0 0
0 0 141 0 0 0 0
0 0 0 71 0 0 0
0 0 0 0 60 0 0
0 0 0 0 0 86 0
0 0 0 0 0 0 59

Lw = Dw − Aw

A =

0 15 53 0 0 0 0
15 0 40 0 46 0 0
53 40 0 31 0 17 0
0 0 31 0 3 29 8
0 46 0 3 0 0 11
0 0 17 29 0 0 40
0 0 0 8 11 40 0

Degree matrix

Adjacency matrix
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Semi-supervised learning

We can use incidence matrices and graph-Laplacians to model and exploit similarities

in a dataset 



Interpolation

13

Suppose we are given data points  and 

pairs  with ;

{xi}i∈I1

{(xj, yj)}j∈I2
I2 ⊂ I1

How do we find ?{(xi, yi)}i∈I1



Interpolation
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I2

I1

For each  in  we know

the correspondent 

xi I2
yi



Interpolation
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y

In general we don’t know the underling function, how can we connect the dots?

x



Interpolation
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y

Linear interpolation



Interpolation

17

y

Smoother interpolation
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Interpolation

One way of formulating this problem mathematically uses the ideas of optimization:

min
{yi}i∈I1

E(y) subject to (PI2
y)j = yj ∀j ∈ I2
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Interpolation

One way of formulating this problem mathematically uses the ideas of optimization:

min
{yi}i∈I1

E(y) subject to (PI2
y)j = yj ∀j ∈ I2

Here,  denotes the projection of a vector with indices in  onto a vector 

with indices in 

PI2
I1

I2

How to choose  to interpolate?E

We can find the new points by minimizing a certain energy function, subject to the 
constrains of the points y we know
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Interpolation

 We cannot use the MSE! Since, we miss the ground truth for the new y
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Interpolation

E(y) = M1
h

y
2

We want to ensure that the values we are trying to estimate (interpolate) do not have 
strange behaviors (i.e., oscillation, large variations)

 We cannot use the MSE! Since, we miss the ground truth for the new y
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Interpolation

E(y) = M1
h

y
2

M1
h

=
1
h

−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋱ ⋮
0 0 … 0 −1 1

,with

We want to ensure that the values we are trying to estimate (interpolate) do not have 
strange behaviors (i.e., oscillation, large variations)

 We cannot use the MSE! Since, we miss the ground truth for the new y

Proposal:
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Interpolation
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Interpolation

A simple example might help us understand why this is a good idea
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Interpolation

x1

y1

Imagine that we are given these two points

x2

y2
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Interpolation

x1

y1

Imagine that we are given these two points

x2

y2

We would add another point, between  and , thus interpolatingx1 x3
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Interpolation
The goal is to find  (in interpolation  is in the middle between the other two 
points)

y3 x3
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Interpolation
The goal is to find  (in interpolation  is in the middle between the other two 
points)

y3 x3

x1

y1

x2

y2

Is it here?

x3

y3

x1

y1

x2

y2

x3

y3

Or here?

Hence, y3 = ?
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Interpolation
We can now see how using the incidence matrix and minimising E might help
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Interpolation
We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?

x1

y1

x2

y2

x3

y3
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=
1
h (−1 1 0

0 −1 1)



23

Interpolation
We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?

x1

y1

x2

y2

x3

y3

M1
h

=
1
h (−1 1 0

0 −1 1)

What is  ?y
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Interpolation
We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?

x1

y1

x2

y2

x3

y3

M1
h

=
1
h (−1 1 0

0 −1 1)

What is  ?y y =
y1
y3
y2
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Interpolation
Given

M1
h
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1
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0 −1 1) y =
y1
y3
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Interpolation
Given
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=
1
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Interpolation
Given

M1
h

=
1
h (−1 1 0

0 −1 1) y =
y1
y3
y2

Their product is

M1
h
y =

1
h (−1 1 0

0 −1 1)
y1
y3
y2

=
1
h (y3 − y1

y2 − y3)
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Interpolation
Given

M1
h

=
1
h (−1 1 0

0 −1 1)

Hence, the proposed energy function becomes

y =
y1
y3
y2

Their product is

M1
h
y =

1
h (−1 1 0

0 −1 1)
y1
y3
y2

=
1
h (y3 − y1

y2 − y3)
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Interpolation
Given

M1
h

=
1
h (−1 1 0

0 −1 1)

Hence, the proposed energy function becomes

y =
y1
y3
y2

Their product is

M1
h
y =

1
h (−1 1 0

0 −1 1)
y1
y3
y2

=
1
h (y3 − y1

y2 − y3)

E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]
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Interpolation

1

1

3

3

2

3.5

Let’s put some numbers considering this scenario
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Interpolation

E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]

1

1

3

3

2

3.5

Let’s put some numbers considering this scenario
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Interpolation

E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]

1

1

3

3

2

3.5

Let’s put some numbers considering this scenario

E(y) = M1
h

y
2

∼
25
4

+
1
4

=
13
2
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Interpolation

1

1

3

3

2

−2

Let’s put some numbers in this other scenario
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Interpolation

E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]

1

1

3

3

2

−2

Let’s put some numbers in this other scenario
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Interpolation

E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]

1

1

3

3

2

−2

Let’s put some numbers in this other scenario

E(y) = M1
h

y
2

∼ 9 + 25 = 34
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Interpolation

E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]

1

1

3

3

2

−2

Let’s put some numbers in this other scenario

E(y) = M1
h

y
2

∼ 9 + 25 = 34

What is the minimum value?
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Interpolation
The min can be found getting the derivative and setting to zero!
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E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]

The min can be found getting the derivative and setting to zero!

∇E(y3) = 2(y3 − y1) − 2(y3 − y2) = 0
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Interpolation

E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]
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y3 =
y1 + y2
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Interpolation

E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]

The min can be found getting the derivative and setting to zero!

∇E(y3) = 2(y3 − y1) − 2(y3 − y2) = 0

y3 =
y1 + y2

2

1

1

3

3

2

2
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Interpolation

E(y) = M1
h

y
2

=
1
h2 [(y3 − y1)2 + (y2 − y3)2]

The min can be found getting the derivative and setting to zero!

∇E(y3) = 2(y3 − y1) − 2(y3 − y2) = 0

The min is, not surprisingly, the point laying in the middle between the 
two! This is why it is called interpolation!

y3 =
y1 + y2

2

1

1

3

3

2

2
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Interpolation

E(y) = M1
h

y
2

M1
h

=
1
h

−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋱ ⋮
0 0 … 0 −1 1

,with

So, it looks like that this energy function does the job!
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Interpolation

E(y) = M1
h

y
2

M1
h

=
1
h

−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋱ ⋮
0 0 … 0 −1 1

,with

So, it looks like that this energy function does the job!

How can we use this to solve the problem in general?
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Interpolation

We can write .y = PI1∖I2
w + PI2

v
⏟

= known
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Interpolation

We can write .y = PI1∖I2
w + PI2

v
⏟

= known

Thus we split the vector  in two parts, the first of unknown the second of knowny

The two P are projectors
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Interpolation

Consider a simple case where we have only 2 known ys out of 5
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Interpolation

Consider a simple case where we have only 2 known ys out of 5

y = PI1∖I2
w + PI2

v

y1
y2

?
?
?

1 0
0 1
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(y1
y2) =

y1
y2

0
0
0
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Interpolation

Consider a simple case where we have only 2 known ys out of 5

y = PI1∖I2
w + PI2

v

y1
y2

?
?
?

1 0
0 1
0 0
0 0
0 0

(y1
y2) =

y1
y2

0
0
0

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

(
?
?
?) =

0
0
?
?
?
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Interpolation

Consider a simple case where we have only 2 known ys out of 5

y = PI1∖I2
w + PI2

v

y1
y2

?
?
?

1 0
0 1
0 0
0 0
0 0

(y1
y2) =

y1
y2

0
0
0

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

(
?
?
?) =

0
0
?
?
?

w ∈ ℝ3 → PI1∖I2
w ∈ ℝ6
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Interpolation

Consider a simple case where we have only 2 known ys out of 5

y = PI1∖I2
w + PI2

v

y1
y2

?
?
?

1 0
0 1
0 0
0 0
0 0

(y1
y2) =

y1
y2

0
0
0

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

(
?
?
?) =

0
0
?
?
?

w ∈ ℝ3 → PI1∖I2
w ∈ ℝ6 v ∈ ℝ2 → PI2

v ∈ ℝ6
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Interpolation

Now, from .y = PI1∖I2
w + PI2

v
⏟

= known
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Interpolation

Now, from .y = PI1∖I2
w + PI2

v
⏟

= known

The missing indices can be computed via

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2
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Interpolation

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2
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Interpolation

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

This is a least-squares problem, for which we know the solution. Indeed we can re-
write  
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Interpolation

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

This is a least-squares problem, for which we know the solution. Indeed we can re-
write  

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

= min
{wi}i∈I1∖I2

M1
h
PI1∖I2

w + M1
h
PI2

v
2

= min
{wi}i∈I1∖I2

Xw + r
2
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Interpolation

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

This is a least-squares problem, for which we know the solution. Indeed we can re-
write  

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

= min
{wi}i∈I1∖I2

M1
h
PI1∖I2

w + M1
h
PI2

v
2

= min
{wi}i∈I1∖I2

Xw + r
2

Matrices are different but the form is the same of the usual MSE (except for

the +!!)
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Interpolation
The solution is then the normal equation with a minus on the right hand side

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

= min
{wi}i∈I1∖I2

M1
h
PI1∖I2

w + M1
h
PI2

v
2

= min
{wi}i∈I1∖I2

Xw + r
2
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Interpolation
The solution is then the normal equation with a minus on the right hand side

Normal equation

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

= min
{wi}i∈I1∖I2

M1
h
PI1∖I2

w + M1
h
PI2

v
2

= min
{wi}i∈I1∖I2

Xw + r
2
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Interpolation
The solution is then the normal equation with a minus on the right hand side

Normal equation X⊤Xŵ = − X⊤r

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

= min
{wi}i∈I1∖I2

M1
h
PI1∖I2

w + M1
h
PI2

v
2

= min
{wi}i∈I1∖I2

Xw + r
2



33

Interpolation
The solution is then the normal equation with a minus on the right hand side

Normal equation X⊤Xŵ = − X⊤r

X⊤X = P⊤
I1∖I2

M⊤
1
h
M1

h
PI1∖I2

= P⊤
I1∖I2

L1
h
PI1∖I2

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

= min
{wi}i∈I1∖I2

M1
h
PI1∖I2

w + M1
h
PI2

v
2

= min
{wi}i∈I1∖I2

Xw + r
2
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Interpolation
The solution is then the normal equation with a minus on the right hand side

Normal equation X⊤Xŵ = − X⊤r

X⊤X = P⊤
I1∖I2

M⊤
1
h
M1

h
PI1∖I2

= P⊤
I1∖I2

L1
h
PI1∖I2

P⊤
I1∖I2

L1
h
PI1∖I2

ŵ = −P⊤
I1∖I2

M⊤
1
h
M1

h
PI2

v

known

= − P⊤
I1∖I2

L1
h
PI2

v ,

min
{wi}i∈I1∖I2

M1
h (PI1∖I2

w + PI2
v)

2

= min
{wi}i∈I1∖I2

M1
h
PI1∖I2

w + M1
h
PI2

v
2

= min
{wi}i∈I1∖I2

Xw + r
2
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Interpolation
Example

 has 10000 pointsI1

 has 10 pointsI2

“Training” set is very  small, and since we  don’t know the ground truth for 
the others  this a semi-supervised problem

y
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Applications

The advantages of using this formulation is that it can be applied to points like we just 
did, but also to data point for which you can define a similarity
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Actors similarity

Incidence matrix
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Actors similarity

Laplacian matrix
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Actors similarity

The task is: knowing the biological sex

of a small set of actors, and using their 

similarity, predict the biological sex of the

others
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Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)
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Actors similarity

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)
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Actors similarity

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)

2x1
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Actors similarity

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)

2x16x2
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Actors similarity

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)

2x16x26x6
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Actors similarity

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)

2x16x26x64x6
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Actors similarity

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)

2x16x26x64x64x1
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Actors similarity

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)

2x16x26x64x64x16x4
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Actors similarity

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)

2x16x26x64x64x16x46x6
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Actors similarity

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male 
(label 0)

yknown = (1
0)

2x16x26x64x64x16x46x64x6
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Actors similarity



40

Actors similarity

PI2
=

0 0
0 0
0 0
1 0
0 0
0 1

Projects 2D vector in to 6D
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Actors similarity

PI2
=

0 0
0 0
0 0
1 0
0 0
0 1

P⊤
I1∖I2

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

Projects 2D vector in to 6D Projects 6D vector in to 4D selecting

the unknown targets
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Actors similarity

PI2
=

0 0
0 0
0 0
1 0
0 0
0 1

P⊤
I1∖I2

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

Projects 2D vector in to 6D Projects 6D vector in to 4D selecting

the unknown targets

P⊤
I1∖I2

Lw PI1∖I2
yunknown = − P⊤

I1∖I2
Lw PI2

yknown ,
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Actors similarity

Easy to find the solution

We can then impose a simple threshold >0.5 -> 1 <0.5 ->0


