Machine Learning with Python MTH786U/P 2023/24

Week 11: Semi-supervised classification with graphs

Nicola Perra, Queen Mary University of London (QMUL)

What is a graph?

What is a graph?

An undirected graph is a pair $G=(V, E)$

What is a graph?

An undirected graph is a pair $G=(V, E)$
V are the vertices

What is a graph?

An undirected graph is a pair $G=(V, E)$
V are the vertices
$E=\left\{x, y \mid(x, y) \in V^{2} \wedge x \neq y\right\}$ are the edges

What is a graph?

An undirected graph is a pair $G=(V, E)$
V are the vertices
$E=\left\{x, y \mid(x, y) \in V^{2} \wedge x \neq y\right\}$ are the edges

What is a graph?

An undirected graph is a pair $G=(V, E)$
V are the vertices
$E=\left\{x, y \mid(x, y) \in V^{2} \wedge x \neq y\right\}$ are the edges

What is a graph?

An undirected graph is a pair $G=(V, E)$
V are the vertices
$E=\left\{x, y \mid(x, y) \in V^{2} \wedge x \neq y\right\}$ are the edges

What is a graph?

An undirected graph is a pair $G=(V, E)$
V are the vertices
$E=\left\{x, y \mid(x, y) \in V^{2} \wedge x \neq y\right\}$ are the edges

What is a graph?

A weighted graph is a pair $G=(V, E)$
V are the vertices
$E=\left\{x, y \mid(x, y) \in V^{2} \wedge x \neq y\right\}$ are the edges

A number called weight is assigned to each edge

What is a graph?

Example

©Wikimedia commons

What is a graph?

Example

Vertices = towns

OWikimedia commons

What is a graph?

Example

Vertices $=$ towns

Edges = town connections
©Wikimedia commons

What is a graph?

Example

Vertices $=$ towns

Edges = town connections

©Wikimedia commons

Incidence matrix

For a (weighted) graph (with weights w) we define a so-called incidence matrix $M_{w} \in \mathbb{R}^{|E| \times|V|}$, where $|E|$ denotes the number of edges and $|V|$ the number of vertices, as

$$
\left(M_{w}\right)_{e v}:=\left\{\begin{array}{ll}
\sqrt{w_{e v}} & \text { if } v=i \\
-\sqrt{w_{e v}} & \text { if } v=j \\
0 & \text { otherwise }
\end{array},\right.
$$

where every edge $e=(i, j)$ connects vertices i and j, with $i>j$.

Incidence matrix

$$
M_{w}=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
-\sqrt{15} & \sqrt{15} & 0 & 0 & 0 & 0 & 0 \\
-\sqrt{53} & 0 & \sqrt{53} & 0 & 0 & 0 & 0 \\
0 & \text { Er } \\
0 & -\sqrt{40} & \sqrt{40} & 0 & 0 & 0 & 0 \\
0 & -\sqrt{46} & 0 & 0 & \sqrt{46} & 0 & 0 \\
0 & 0 & 0 & -\sqrt{3} & \sqrt{3} & 0 & 0 \\
0 & 0 & -\sqrt{31} & \sqrt{31} & 0 & 0 & 0 \\
0 & 0 & 0 & -\sqrt{29} & 0 & \sqrt{29} & 0 \\
0 & \text { E6 } \\
0 & 0 & -\sqrt{17} & 0 & 0 & \sqrt{17} & 0 \\
0 & 0 & 0 & 0 & -\sqrt{11} & 0 & \sqrt{11} \\
0 & 0 & 0 & -\sqrt{8} & 0 & 0 & \sqrt{8} \\
0 & 0 & 0 & 0 & 0 & -\sqrt{40} & \sqrt{40}
\end{array}\right) \text { Er }
$$

What is a graph?

Another example: finite differences

What is a graph?

Another example: finite differences

Every vertex is connected only to one other vertex

What is a graph?

Another example: finite differences

What is a graph?

Another example: finite differences

Every vertex is connected only to one other vertex

The weight is a constant factor $(1 / h)^{2}$

Suppose every vertex represents $f\left(x_{i}\right)$:

What is a graph?

$f^{\prime}\left(x_{i}\right) \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h} \quad$ can be written as matrix-vector multiplication

$$
\left(\begin{array}{c}
f^{\prime}\left(x_{1}\right) \\
f^{\prime}\left(x_{2}\right) \\
\vdots \\
f^{\prime}\left(x_{d}\right)
\end{array}\right) \approx \frac{1}{h}\left(\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & 0 & \ldots & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{d+1}\right)
\end{array}\right)
$$

What is a graph?

$f^{\prime}\left(x_{i}\right) \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h} \quad$ can be written as matrix-vector multiplication

$$
\left(\begin{array}{c}
f^{\prime}\left(x_{1}\right) \\
f^{\prime}\left(x_{2}\right) \\
\vdots \\
f^{\prime}\left(x_{d}\right)
\end{array}\right) \approx \frac{1}{h}\left(\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & 0 & \ldots & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{d+1}\right)
\end{array}\right)
$$

This is our incidence matrix

Graph Laplacian

Based on the finite difference approximation

$$
M_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & 0 & \ldots & 0 & -1 & 1
\end{array}\right)
$$

it is natural to define second-order finite differences (or Laplacians in higher dimensions) as

$$
L_{\frac{1}{h}}=M_{\frac{1}{h}}^{\top} M_{\frac{1}{h}}
$$

Graph Laplacian

Based on the finite difference approximation

$$
M_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & 0 & \ldots & 0 & -1 & 1
\end{array}\right)
$$

it is natural to define second-order finite differences (or Laplacians in higher dimensions) as

$$
L_{\frac{1}{h}}=M_{\frac{1}{h}}^{\top} M_{\frac{1}{h}}
$$

We can define the same for arbitrary graphs!

Graph Laplacian

The graph-Laplacian $L_{w} \in \mathbb{R}^{|V| \times|V|}$ is defined as

$$
L_{w}:=M_{w}^{\top} M_{w} .
$$

Graph Laplacian

The graph-Laplacian $L_{w} \in \mathbb{R}^{|V| \times|V|}$ is defined as

$$
L_{w}:=M_{w}^{\top} M_{w} .
$$

$$
L_{w}=M_{w}^{\top} M_{w}=\left(\begin{array}{ccccccc}
68 & -15 & -53 & 0 & 0 & 0 & 0 \\
-15 & 101 & -40 & 0 & -46 & 0 & 0 \\
-53 & -40 & 141 & -31 & 0 & -17 & 0 \\
0 & 0 & -31 & 71 & -3 & -29 & -8 \\
0 & -46 & 0 & -3 & 60 & 0 & -11 \\
0 & 0 & -17 & -29 & 0 & 86 & -40 \\
0 & 0 & 0 & -8 & -11 & -40 & 59
\end{array}\right)
$$

Graph Laplacian

The graph-Laplacian $L_{w} \in \mathbb{R}^{|V| \times|V|}$ is defined also as

Degree matrix

Adjacency matrix

Graph Laplacian

The graph-Laplacian $L_{w} \in \mathbb{R}^{|V| \times|V|}$ is defined also as $L_{w}=D_{w}-A_{w}$

$$
\begin{aligned}
D & =\left(\begin{array}{ccccccc}
68 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 101 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 141 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 71 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 60 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 86 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 59
\end{array}\right) \\
A & =\left(\begin{array}{ccccccc}
0 & 15 & 53 & 0 & 0 & 0 & 0 \\
15 & 0 & 40 & 0 & 46 & 0 & 0 \\
53 & 40 & 0 & 31 & 0 & 17 & 0 \\
0 & 0 & 31 & 0 & 3 & 29 & 8 \\
0 & 46 & 0 & 3 & 0 & 0 & 11 \\
0 & 0 & 17 & 29 & 0 & 0 & 40 \\
0 & 0 & 0 & 8 & 11 & 40 & 0
\end{array}\right)
\end{aligned}
$$

Degree matrix

Adjacency matrix

Semi-supervised learning

We can use incidence matrices and graph-Laplacians to model and exploit similarities in a dataset

Interpolation

Suppose we are given data points $\left\{x_{i}\right\}_{i \in I_{1}}$ and pairs $\left\{\left(x_{j}, y_{j}\right)\right\}_{j \in I_{2}}$ with $I_{2} \subset I_{1} ;$

How do we find $\left\{\left(x_{i}, y_{i}\right)\right\}_{i \in I_{1}}$?

Interpolation

For each x_{i} in I_{2} we know the correspondent y_{i}

Interpolation

In general we don't know the underling function, how can we connect the dots?

Interpolation

Linear interpolation

Interpolation

Smoother interpolation

Interpolation

One way of formulating this problem mathematically uses the ideas of optimization:

$$
\min _{\left\{y_{i}\right\}_{\in I_{1}}} E(\mathbf{y}) \quad \text { subject to } \quad\left(\mathbf{P}_{I_{2}} \mathbf{y}\right)_{j}=y_{j} \quad \forall j \in I_{2}
$$

Interpolation

One way of formulating this problem mathematically uses the ideas of optimization:

$$
\min _{\left\{y_{i}\right\}_{i \in I_{1}}} E(\mathbf{y}) \quad \text { subject to } \quad\left(\mathbf{P}_{I_{2}} \mathbf{y}\right)_{j}=y_{j} \quad \forall j \in I_{2}
$$

We can find the new points by minimizing a certain energy function, subject to the constrains of the points y we know

Interpolation

One way of formulating this problem mathematically uses the ideas of optimization:

$$
\min _{\left\{y_{i}\right\}_{\in I_{1}}} E(\mathbf{y}) \quad \text { subject to } \quad\left(\mathbf{P}_{I_{2}} \mathbf{y}\right)_{j}=y_{j} \quad \forall j \in I_{2}
$$

We can find the new points by minimizing a certain energy function, subject to the constrains of the points y we know

Here, $\mathbf{P}_{I_{2}}$ denotes the projection of a vector with indices in I_{1} onto a vector with indices in I_{2}

Interpolation

One way of formulating this problem mathematically uses the ideas of optimization:

$$
\min _{\left\{y_{i}\right\}_{\in I_{1}}} E(\mathbf{y}) \quad \text { subject to } \quad\left(\mathbf{P}_{I_{2}} \mathbf{y}\right)_{j}=y_{j} \quad \forall j \in I_{2}
$$

We can find the new points by minimizing a certain energy function, subject to the constrains of the points y we know

Here, $\mathbf{P}_{I_{2}}$ denotes the projection of a vector with indices in I_{1} onto a vector with indices in I_{2}

How to choose E to interpolate?

Interpolation

We cannot use the MSE! Since, we miss the ground truth for the new \mathbf{y}

Interpolation

We cannot use the MSE! Since, we miss the ground truth for the new \mathbf{y}
We want to ensure that the values we are trying to estimate (interpolate) do not have strange behaviors (i.e., oscillation, large variations)

Interpolation

We cannot use the MSE! Since, we miss the ground truth for the new \mathbf{y}
We want to ensure that the values we are trying to estimate (interpolate) do not have strange behaviors (i.e., oscillation, large variations)

Proposal:

Interpolation

We cannot use the MSE! Since, we miss the ground truth for the new \mathbf{y}
We want to ensure that the values we are trying to estimate (interpolate) do not have strange behaviors (i.e., oscillation, large variations)

Proposal:

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}
$$

Interpolation

We cannot use the MSE! Since, we miss the ground truth for the new \mathbf{y}
We want to ensure that the values we are trying to estimate (interpolate) do not have strange behaviors (i.e., oscillation, large variations)

Proposal:

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2} \quad \text { with }
$$

$$
\mathbf{M}_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & 0 & \ldots & 0 & -1 & 1
\end{array}\right)
$$

Interpolation

Interpolation

A simple example might help us understand why this is a good idea

Interpolation

Imagine that we are given these two points

Interpolation

Imagine that we are given these two points

We would add another point, between x_{1} and x_{3}, thus interpolating

Interpolation

The goal is to find y_{3} (in interpolation x_{3} is in the middle between the other two points)

22

Interpolation

The goal is to find y_{3} (in interpolation x_{3} is in the middle between the other two points)

Is it here?

Interpolation

The goal is to find y_{3} (in interpolation x_{3} is in the middle between the other two points)

Is it here?

Or here?

Interpolation

The goal is to find y_{3} (in interpolation x_{3} is in the middle between the other two points)

Is it here?

Or here?

Hence, $y_{3}=?$

Interpolation

We can now see how using the incidence matrix and minimising E might help

Interpolation

We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?

Interpolation

We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?

Interpolation

We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?

$$
M_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

Interpolation

We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?

$$
M_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

What is \mathbf{y} ?

Interpolation

We can now see how using the incidence matrix and minimising E might help

What is the incidence matrix here?

Interpolation

Given

$$
M_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \quad \mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{2}
\end{array}\right)
$$

Interpolation

Given

$$
M_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

$$
\mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{2}
\end{array}\right)
$$

Their product is

$$
\mathbf{M}_{\frac{1}{h}} \mathbf{y}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{2}
\end{array}\right)
$$

Interpolation

Given

$$
M_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \quad \mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{2}
\end{array}\right)
$$

Their product is

$$
\mathbf{M}_{\frac{1}{h}} \mathbf{y}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{2}
\end{array}\right)=\frac{1}{h}\binom{y_{3}-y_{1}}{y_{2}-y_{3}}
$$

Interpolation

Given

$$
M_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \quad \mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{2}
\end{array}\right)
$$

Their product is

$$
\mathbf{M}_{\frac{1}{h}} \mathbf{y}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{2}
\end{array}\right)=\frac{1}{h}\binom{y_{3}-y_{1}}{y_{2}-y_{3}}
$$

Hence, the proposed energy function becomes

Interpolation

Given

$$
M_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \quad \mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{2}
\end{array}\right)
$$

Their product is

$$
\mathbf{M}_{\frac{1}{h}} \mathbf{y}=\frac{1}{h}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{2}
\end{array}\right)=\frac{1}{h}\binom{y_{3}-y_{1}}{y_{2}-y_{3}}
$$

Hence, the proposed energy function becomes

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right]
$$

Interpolation

Let's put some numbers considering this scenario

Interpolation

Let's put some numbers considering this scenario

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right]
$$

Interpolation

Let's put some numbers considering this scenario

$$
\begin{aligned}
& E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right] \\
& E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2} \sim \frac{25}{4}+\frac{1}{4}=\frac{13}{2}
\end{aligned}
$$

Interpolation

Let's put some numbers in this other scenario

Interpolation

Let's put some numbers in this other scenario

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right]
$$

Interpolation

Let's put some numbers in this other scenario

$$
\begin{aligned}
& E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right] \\
& E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2} \sim 9+25=34
\end{aligned}
$$

Interpolation

Let's put some numbers in this other scenario

$$
\begin{aligned}
& E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right] \\
& E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2} \sim 9+25=34
\end{aligned}
$$

What is the minimum value?

Interpolation

The min can be found getting the derivative and setting to zero!

Interpolation

The min can be found getting the derivative and setting to zero!

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right]
$$

Interpolation

The min can be found getting the derivative and setting to zero!

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right]
$$

$$
\nabla E\left(\mathbf{y}_{3}\right)=2\left(y_{3}-y_{1}\right)-2\left(y_{3}-y_{2}\right)=0
$$

Interpolation

The min can be found getting the derivative and setting to zero!

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right]
$$

$$
\nabla E\left(\mathbf{y}_{3}\right)=2\left(y_{3}-y_{1}\right)-2\left(y_{3}-y_{2}\right)=0
$$

$$
y_{3}=\frac{y_{1}+y_{2}}{2}
$$

Interpolation

The min can be found getting the derivative and setting to zero!

$$
\begin{aligned}
& E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right] \\
& \nabla E\left(\mathbf{y}_{3}\right)=2\left(y_{3}-y_{1}\right)-2\left(y_{3}-y_{2}\right)=0 \\
& y_{3}=\frac{y_{1}+y_{2}}{2}
\end{aligned}
$$

Interpolation

The min can be found getting the derivative and setting to zero!

$$
\begin{gathered}
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2}=\frac{1}{h^{2}}\left[\left(y_{3}-y_{1}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right] \\
\nabla E\left(\mathbf{y}_{3}\right)=2\left(y_{3}-y_{1}\right)-2\left(y_{3}-y_{2}\right)=0 \\
y_{3}=\frac{y_{1}+y_{2}}{2}
\end{gathered}
$$

The min is, not surprisingly, the point laying in the middle between the two! This is why it is called interpolation!

Interpolation

So, it looks like that this energy function does the job!

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2} \quad \text { with } \quad \mathbf{M}_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & 0 & \ldots & 0 & -1 & 1
\end{array}\right),
$$

Interpolation

So, it looks like that this energy function does the job!

$$
E(\mathbf{y})=\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{y}\right\|^{2} \quad \text { with } \quad \mathbf{M}_{\frac{1}{h}}=\frac{1}{h}\left(\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & 0 & \ldots & 0 & -1 & 1
\end{array}\right),
$$

Interpolation

$$
\text { We can write } \mathbf{y}=\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\underbrace{\mathbf{P}_{I_{2}} \mathbf{v}}_{=\text {known }} .
$$

Interpolation

$$
\text { We can write } \mathbf{y}=\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\underbrace{\mathbf{P}_{I_{2}} \mathbf{v}}_{=\text {known }} \text {. }
$$

Thus we split the vector \mathbf{y} in two parts, the first of unknown the second of known

Interpolation

$$
\text { We can write } \mathbf{y}=\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\underbrace{\mathbf{P}_{I_{2}} \mathbf{v}}_{=\text {known }} .
$$

Thus we split the vector \mathbf{y} in two parts, the first of unknown the second of known

The two P are projectors

Interpolation

Consider a simple case where we have only 2 known ys out of 5

Interpolation

Consider a simple case where we have only 2 known ys out of 5

$$
\mathbf{y}=\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}
$$

Interpolation

Consider a simple case where we have only 2 known ys out of 5

Interpolation

Consider a simple case where we have only 2 known ys out of 5

Interpolation

Consider a simple case where we have only 2 known ys out of 5

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
? \\
? \\
?
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
? \\
I_{1} I_{1} \\
? \\
?
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
? \\
? \\
?
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
0 \\
0 \\
0
\end{array}\right)
$$

Interpolation

Consider a simple case where we have only 2 known ys out of 5

Interpolation

Consider a simple case where we have only 2 known ys out of 5

Interpolation

Now, from $\mathbf{y}=\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\underbrace{\mathbf{P}_{I_{2}} \mathbf{v}}$.
= known

Interpolation

Now, from $\mathbf{y}=\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\underbrace{\mathbf{P}_{I_{2}} \mathbf{v}}$
= known

The missing indices can be computed via

$$
\min _{\left\{w_{i}\right\}_{i I_{1} \backslash I_{2}}}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash _{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}
$$

Interpolation

$$
\min _{\left\{w_{i}\right\}_{i I_{1} \backslash l_{2}}}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash _{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}
$$

Interpolation

$$
\min _{\left\{w_{i}\right\}_{i I_{1} \backslash \backslash_{2}}}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}
$$

This is a least-squares problem, for which we know the solution. Indeed we can rewrite

Interpolation

$$
\min _{\left\{w_{i}\right\}_{i I_{1} \backslash I_{2}}}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}
$$

This is a least-squares problem, for which we know the solution. Indeed we can rewrite

$$
\min _{\left\{w_{i}\right\}_{i I_{1} \backslash l_{2}}}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}=\min _{\left\{w_{i}\right\}_{i I_{1} \backslash l_{2}}}\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{1} \backslash J_{2}} \mathbf{w}+\mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{2}} \mathbf{v}\right\|^{2}=\min _{\left\{w_{i}\right\}_{i I_{1} \backslash V_{2}}}\|\mathbf{X} \mathbf{w}+\mathbf{r}\|^{2}
$$

Interpolation

$$
\min _{\left\{w_{i}\right\}_{i I_{1} \backslash l_{2}}}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}
$$

This is a least-squares problem, for which we know the solution. Indeed we can rewrite

$$
\min _{\left\{w_{i}\right\}_{i \in I_{1} \backslash I_{2}}}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash \backslash_{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}=\min _{\left\{w_{i}\right\}_{i \in I_{1} \backslash_{2}}}\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{w}+\mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{2}} \mathbf{v}\right\|^{2}=\min _{\left\{w_{i}\right\}_{i \in I_{1} \backslash I_{2}}}\|\mathbf{X} \mathbf{w}+\mathbf{r}\|^{2}
$$

Matrices are different but the form is the same of the usual MSE (except for the $+!!$)

Interpolation

The solution is then the normal equation with a minus on the right hand side

$$
\min _{\left\{w_{i}\right\}_{i \in I_{1} \backslash_{2}}}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash L_{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}=\min _{\left\{w_{i} i_{i} i_{1} l_{1} \backslash 2\right.}\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{1} \backslash L_{2}} \mathbf{w}+\mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{2}} \mathbf{v}\right\|^{2}=\min _{\left\{w_{i}\right\}_{i \in I_{1} \backslash_{2}}}\|\mathbf{X w}+\mathbf{r}\|^{2}
$$

Interpolation

The solution is then the normal equation with a minus on the right hand side

$$
\min _{\left\{w_{i}\right\}_{i \in I_{1} \backslash_{2}}}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash L_{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}=\min _{\left\{w_{i} i_{i} i_{1} l_{1} \backslash 2\right.}\left\|\mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{1} \backslash L_{2}} \mathbf{w}+\mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{2}} \mathbf{v}\right\|^{2}=\min _{\left\{w_{i}\right\}_{i \in I_{1} \backslash_{2}}}\|\mathbf{X w}+\mathbf{r}\|^{2}
$$

Normal equation

Interpolation

The solution is then the normal equation with a minus on the right hand side

Normal equation

$$
\mathbf{X}^{\top} \mathbf{X} \hat{\mathbf{w}}=-\mathbf{X}^{\top} \mathbf{r}
$$

Interpolation

The solution is then the normal equation with a minus on the right hand side

Normal equation

$$
\begin{gathered}
\mathbf{X}^{\top} \mathbf{X} \hat{\mathbf{w}}=-\mathbf{X}^{\top} \mathbf{r} \\
\mathbf{X}^{\top} \mathbf{X}=\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{M}_{\frac{1}{h}}^{\top} \mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{1} \backslash l_{2}}=\mathbf{P}_{I_{1} \backslash L_{2}}^{\top} \mathbf{L}_{\frac{1}{h}} \mathbf{P}_{I_{1} \backslash I_{2}}
\end{gathered}
$$

Interpolation

The solution is then the normal equation with a minus on the right hand side $\min _{\left\{w_{i} i_{i} I_{1} \backslash_{2}\right.}\left\|\mathbf{M}_{\frac{1}{h}}\left(\mathbf{P}_{I_{1} \backslash \backslash_{2}} \mathbf{w}+\mathbf{P}_{I_{2}} \mathbf{v}\right)\right\|^{2}=\min _{\left\{w_{i}\right\}_{i l_{1} I_{1} V_{2}}}\left\|\mathbf{M}_{\bar{h}} \mathbf{P}_{I_{1} \backslash \backslash_{2}} \mathbf{w}+\mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{2}} \mathbf{v}\right\|^{2}=\min _{\left\{w_{i}\right\}_{i \in I_{1} V_{2}}}\|\mathbf{X w}+\mathbf{r}\|^{2}$

Normal equation

$$
\begin{gathered}
\mathbf{X}^{\top} \mathbf{X} \hat{\mathbf{w}}=-\mathbf{X}^{\top} \mathbf{r} \\
\mathbf{X}^{\top} \mathbf{X}=\mathbf{P}_{I_{1} \backslash l_{2}}^{\top} \mathbf{M}_{\frac{1}{h}}^{\top} \mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{1} \backslash l_{2}}=\mathbf{P}_{I_{1} \backslash L_{2}}^{\top} \mathbf{L}_{\frac{1}{h}} \mathbf{P}_{I_{1} \backslash l_{2}} \\
\mathbf{P}_{I_{1} \backslash L_{2}}^{\top} \mathbf{L}_{\frac{1}{h}} \mathbf{P}_{I_{1} \backslash L_{2}} \hat{\mathbf{w}}=\underbrace{-\mathbf{P}_{I_{1} \backslash L_{2}}^{\top} \mathbf{M}_{\frac{1}{h}}^{\top} \mathbf{M}_{\frac{1}{h}} \mathbf{P}_{I_{2}} \mathbf{v}}_{\text {known }}=-\mathbf{P}_{I_{1} \backslash L_{2}}^{\top} \mathbf{L}_{\frac{1}{h}} \mathbf{P}_{I_{2}} \mathbf{v},
\end{gathered}
$$

Interpolation

Example

I_{1} has 10000 points
I_{2} has 10 points

"Training" set is very small, and since we don't know the ground truth for the others this a semi-supervised problem

Applications

The advantages of using this formulation is that it can be applied to points like we just did, but also to data point for which you can define a similarity

Actors similarity

Actors similarity

Laplacian matrix
$L_{w}=M_{w}^{\top} M_{w}=\left(\begin{array}{cccccc}89 & 0 & 0 & -64 & -25 & 0 \\ 0 & 117 & -36 & 0 & 0 & -81 \\ 0 & -36 & 121 & 0 & -49 & -36 \\ -64 & 0 & 0 & 89 & -25 & 0 \\ -25 & 0 & -49 & -25 & 99 & 0 \\ 0 & -81 & -36 & 0 & 0 & 117\end{array}\right)$

Actors similarity

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\mathbf{y}_{\text {known }}=\binom{1}{0}
$$

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\begin{gathered}
\mathbf{y}_{\text {known }}=\binom{1}{0} \\
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }},
\end{gathered}
$$

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\begin{gathered}
\mathbf{y}_{\text {known }}=\binom{1}{0} \\
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }},
\end{gathered}
$$

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\begin{gathered}
\mathbf{y}_{\text {known }}=\binom{1}{0} \\
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }},
\end{gathered}
$$

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\begin{gathered}
\mathbf{y}_{\text {known }}=\binom{1}{0} \\
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }},
\end{gathered}
$$

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\begin{gathered}
\mathbf{y}_{\text {known }}=\binom{1}{0} \\
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }},
\end{gathered}
$$

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\begin{gathered}
\mathbf{y}_{\text {known }}=\binom{1}{0} \\
4 \times 1 \quad 4 \times 66 \times 66 \times 22 \times 1 \\
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }},
\end{gathered}
$$

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\begin{gathered}
\mathbf{y}_{\text {known }}=\binom{1}{0} \\
6 \times 44 \times 1 \quad 4 \times 66 \times 66 \times 22 \times 1 \\
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash L_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }},
\end{gathered}
$$

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\mathbf{y}_{\text {known }}=\binom{1}{0}
$$

$$
\begin{gathered}
6 \times 66 \times 44 \times 1 \quad 4 \times 66 \times 66 \times 22 \times 1 \\
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }},
\end{gathered}
$$

Actors similarity

Assume that we know that Jessica Chastain is female (label 1) and Will Ferrel male (label 0)

$$
\mathbf{y}_{\text {known }}=\binom{1}{0}
$$

$$
\begin{gathered}
4 \times 66 \times 66 \times 44 \times 1 \quad 4 \times 66 \times 66 \times 22 \times 1 \\
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash I_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }},
\end{gathered}
$$

Actors similarity

Actors similarity

$$
\mathbf{P}_{I_{2}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)
$$

Projects 2D vector in to 6D

Actors similarity

$$
\mathbf{P}_{I_{2}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\mathbf{P}_{I_{1} \backslash I_{2}}^{\top}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Projects 2D vector in to 6D

Projects 6D vector in to 4D selecting the unknown targets

Actors similarity

$$
\mathbf{P}_{I_{1} \backslash L_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{1} \backslash I_{2}} \mathbf{y}_{\text {unknown }}=-\mathbf{P}_{I_{1} \backslash \backslash_{2}}^{\top} \mathbf{L}_{w} \mathbf{P}_{I_{2}} \mathbf{y}_{\text {known }}
$$

$$
\mathbf{P}_{I_{2}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\mathbf{P}_{I_{1} I_{2}}^{\top}=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Projects 2D vector in to 6D

Projects 6D vector in to 4D selecting the unknown targets

Actors similarity

Easy to find the solution

$$
\begin{aligned}
& \left(\begin{array}{cccc}
89 & 0 & 0 & -25 \\
0 & 117 & -36 & 0 \\
0 & -36 & 121 & -49 \\
-25 & 0 & -49 & 99
\end{array}\right) \tilde{v}=\left(\begin{array}{c}
64 \\
0 \\
0 \\
25
\end{array}\right) . \\
& \hat{v}=\left(\begin{array}{llllll}
0.8912 & 0.0840 & 0.2732 & 1 & 0.6128 & 0
\end{array}\right)^{\top} .
\end{aligned}
$$

We can then impose a simple threshold >0.5 -> $1<0.5->0$

