
MTH5104: Convergence and Continuity 2023–2024

Problem Sheet 5 (Series)

1. Prove Lemma 4.6 from the lecture notes, i.e., show that if
∑∞

k=1 xk = S and
c ∈ R then

∑∞
k=1 cxk = cS.

Solution. We want to prove Lemma 4.6: If
∑∞

k=1 xk = S and c ∈ R then∑∞
k=1 cxk = cS.

Proof. If
∑∞

k=1 xk = S, this means that the partial sums Sn =
∑n

k=1 xk form
a sequence (Sn)∞n=1 which converges to S. But then by Theorem 3.24, the
sequence (cSn)∞n=1 converges to cS. The claim therefore follows immediately
by noting that

∑n
k=1 cxk = c

∑n
k=1 xk, which is simply the distributivity of R

(note that we only have finitely many terms when applying the distributivity
rule).

2. (a) Which of the following sums exist? Justify your answers, using any results
from the lectures/notes.

(i)

∞∑
k=1

1

k3
, (ii)

∞∑
k=1

1

k2k
, (iii)

∞∑
k=1

1

3k
.

(b) Does the sum
∞∑
k=1

(
1

k3
+

1

k2k
− 1

3k

)
exist? Prove your assertion.

Solution.

(a) i. We know that
∑∞

k=1
1
k2

exists. Also 0 ≤ 1
k3
≤ 1

k2
, so

∑∞
k=1

1
k3

exists
by the comparison test.

ii. 0 ≤ 1
k2k
≤ 1

2k
=
(
1
2

)k
. The sum

∑
k(

1
2)k exists, being the geomet-

ric series with common ratio 1
2 < 1 (see Theorem 4.11). By the

comparison test, the sum
∑∞

k=1
1
k2k

exists.
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iii. The sum
∑∞

k=1
1
3k does not exist. If it did, then so also would the sum∑∞

k=1
1
k , according to Lemma 4.6. But we know that the harmonic

series does not converge.

(b) This sum does not exist.

Proof. Using (a) and Lemma 4.5, we know that the sum
∑

k(
1
k3

+ 1
k2k

)
exists. If the given sum would exist, then by Lemma 4.5 and 4.6, also the
sum

∞∑
k=1

1

3k
=

∞∑
k=1

[( 1

k3
+

1

k2k

)
−
( 1

k3
+

1

k2k
− 1

3k

)]
would exist, but we have just seen in (b) that this is not the case.

3. Use the ratio test to decide which of the following series exist:

(a)

∞∑
k=1

2k + 3k

2k + 5k
.

(b)

∞∑
k=1

2k + 5k

2k + 3k
.

(c)

∞∑
k=1

2k + 3k + 5k

2k + 3k
.

Solution.

(a) We write xk for the individual terms in the series:

xk =
2k + 3k

2k + 5k

Note that these are all positive. We calculate:

xk+1

xk
=

2k+1 + 3k+1

2k+1 + 5k+1
· 2k + 5k

2k + 3k

=
2k+1 + 3k+1

2k + 3k
· 2k + 5k

2k+1 + 5k+1

=
(23)k+1 + 1
1
3((23)k + 1)

·
1
5((25)k + 1)

(25)k+1 + 1

→ 1

1/3
· 1/5

1
=

3

5
< 1.

We conclude from the ratio test that the series converges. Parts (b) and
(c) are similar. (Examples like this are very mechanical. You should do
lots of them in order to gain fluency.)
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4. Compute the value of the following series.

(a)
∑∞

k=1
1

(k+1)(k+2) =
∑∞

k=1

(
1

k+1 −
1

k+2

)
.

(b)
∑∞

k=1
2

(k+10)(k+12) .

Solution.

(a) Write Sn =
∑n

k=1

(
1

k+1 −
1

k+2

)
.

Then we have S1 = 1
2 −

1
3 , S2 = 1

2 −
1
3 + 1

3 −
1
4 = 1

2 −
1
4 , etc. So

Sn =
1

2
− 1

3
+

1

3
− 1

4
+

1

14
− 1

5
+ . . .+

1

n+ 1
− 1

n+ 2
=

1

2
− 1

n+ 2
.

Obviously (by Theorem 3.24), we have Sn → 1
2 as n → ∞, so the series∑∞

k=1

(
1

k+1 −
1

k+2

)
exists and has value 1

2 .

(b) Write Sn =
∑n

k=1

(
1

k+10 −
1

k+12

)
.

Then we have S1 = 1
11 −

1
13 , S2 = 1

11 −
1
13 + 1

12 −
1
14 , S3 = 1

11 −
1
13 +

1
12 −

1
14 + 1

13 −
1
15 = 1

11 + 1
12 −

1
14 −

1
15 , etc. So this time, we have two

positive and two negative terms that stay, while all others cancel each
other. Hence, after these cancellations, we have

Sn =
1

11
+

1

12
− 1

n+ 11
− 1

n+ 12

Obviously (by Theorem 3.24), we have Sn → 1
11 + 1

12 = 23
132 as n → ∞,

so the series
∑∞

k=1

(
1

k+10 −
1

k+12

)
exists and has value 23

132 .

5. Prove that the series
∑∞

k=1
1
kα converges for any α > 1.

[Hint. Try adapting the proof of Theorem 4.12, aiming this time for an upper
bound on the partial sums.]

Solution. As in the proof of Theorem 4.12, break up the partial sum S2m

into blocks containing 1, 1, 2, 4, 8, . . . , 2m−1 terms. The final block has 2m−1

terms, each bounded above by 1/(2m−1)α. The sum of terms within the block
is thus bounded above by 2m−1(2m−1)−α = (2m−1)−(α−1) = 2−(m−1)(α−1).
Thus S2m = S2m−1 + 2−(m−1)(α−1). Together with S1 = 1, this gives

S2m ≤ 1 + 1 + 2−(α−1) + 2−2(α−1) + 2−3(α−1) + · · ·+ 2−(m−1)(α−1)

≤ 1 +
1

1− 2−(α−1)
.

where we have used the formula for the sum of a geometric series with common
ratio 2−(α−1). (Note that we are using the fact hat α is strictly greater than 1.)
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Thus (Sn) is an increasing sequence that is bounded above, which converges
by Theorem 3.32. Thus

∑∞
k=1

1
nα exists.

In a sense, the harmonic series only “just converges”.

6. Prove or disprove the following statements:

(a) If
∑∞

k=1 xk converges absolutely, then
∑∞

k=1(−1)kxk exists.

(b) If
∑∞

k=1 xk converges absolutely, then
∑∞

k=1
xk
k exists.

(c) If
∑∞

k=1 xk converges absolutely, then
∑∞

k=1 k · xk exists.

Solution. The parts (a) and (b) come from the Exam from May 2014.

(a) This is true.

Proof. If
∑

k xk converges absolutely, then
∑

k|xk| exists and thus∑
k|(−1)kxk| =

∑
k|xk| exists. This means that

∑
k(−1)kxk converges

absolutely (by definition) and since absolute convergence implies conver-
gence, the series exists.

(b) This is true.

Proof. If
∑

k xk converges absolutely, then
∑

k|xk| exists and thus by the

comparison test, using 0 ≤ |xk|k ≤ |xk|, the sum
∑

k
|xk|
k exists. So

∑
k
xk
k

converges absolutely and hence
∑

k
xk
k exists.

(c) This is false.

Proof. A counterexample is
∑

k xk =
∑

k
1
k2

which we know exists. As
all terms are positive, the series also converges absolutely (for series with
only positive terms, convergence and absolute convergence are obviously
equivalent). However,

∑
k k · xk =

∑
k

1
k , which we know does not exist.

7. In this question,
∑∞

k=1 xk is a series that converges absolutely.

(a) Suppose that |xk| ≤ 1 for all k ∈ N. Prove that the series
∑∞

k=1 x
2
k

converges.

(b) Now drop the assumption that |xk| ≤ 1 for all k ∈ N. Prove that it is
still the case that the series

∑∞
k=1 x

2
k converges.
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Solution.

(a) Since |xk| ≤ 1, we have 0 ≤ x2k = |xk|2 ≤ |xk| for all k ∈ N. We are
given that

∑∞
k=1 |xk| converges. So, by the comparison test,

∑∞
k=1 x

2
k

converges.

(b) By Theorem 4.3, we know that the sequence (|xk|)∞k=1 converges to 0.
This implies that the sequence (|xk|)∞k=1 is bounded, say, by M > 0.
That is, |xk| ≤M for all k ∈ N.

So we have 0 ≤ x2k = |xk|2 ≤ M |xk|. We know from Lemma 4.6 that∑∞
k=1M |xk| converges. So, by the comparison test,

∑∞
k=1 x

2
k converges.

8. What happens in the previous question if we drop the word ‘absolutely’, so
that

∑∞
k=1 xk is a series that merely converges?

Solution. Let xk = (−1)k/
√
k and consider the series

∞∑
k=1

xk =
∞∑
k=1

(−1)k/
√
k.

This series converges using the same argument that was used for the alternating
harmonic series. (Check this!) However,

∑∞
k=1 x

2
k =

∑∞
k=1 1/k, which is the

non-convergent harmonic series. Note that the series
∑∞

k=1(−1)k/
√
k is not

absolutely convergent.

9. Let xk = 2
k(k+1)(k+2) for all k ∈ N and define Sn =

∑n
k=1 xk.

(a) Evaluate Sn as a function of n.

Hint. In a similar situation, in the notes and lectures, we used the fact
that 1

k(k+1) = 1
k −

1
k+1 . Try something similar here, writing 2

k(k+1)(k+2)
as a difference of two simpler quotients.

(b) Evaluate the limit of the sequence (Sn)∞n=1.

Note that the limit from part (b) is by definition
∑∞

n=1
2

k(k+1)(k+2) .

Solution.

(a) We use the fact that

2

k(k + 1)(k + 2)
=

1

k(k + 1)
− 1

(k + 1)(k + 2)
.
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Then

Sn =
( 1

1 · 2
− 1

2 · 3

)
+
( 1

2 · 3
− 1

3 · 4

)
+

· · ·+
( 1

(n− 1)n
− 1

n(n+ 1)

)
+
( 1

n(n+ 1)
− 1

(n+ 1)(n+ 2)

)
=

1

1 · 2
+
(
− 1

2 · 3
+

1

2 · 3

)
+ · · ·+

(
− 1

n(n+ 1)
+

1

n(n+ 1)

)
− 1

(n+ 1)(n+ 2)

=
1

2
− 1

(n+ 1)(n+ 2)
.

(b) Since
∣∣ 1
(n+1)(n+2)

∣∣ ≤ ∣∣ 1
n

∣∣, the sequence
(

1
(n+1)(n+2)

)
converges to 0, by

dominated convergence. Thus, (Sn) converges to 1
2 by Theorem 3.24.

10. Here we study
∑∞

k=1
2k

k! .

(a) Show that k! ≥ 3k−2.

(b) Deduce that 2k/k! ≤ 4 · (2/3)k−2.

(c) Deduce that
∑∞

k=1
2k

k! exists.

Solution. Here we look at
∑∞

k=1 2k/k!.

(a) k! = 1 · 2 · 3 · 4 · . . . · k ≥ 1 · 1 · 3 · 3 · . . . · 3 = 3k−2.

(b) Using a), we immediately deduce 2k/k! ≤ 2k/3k−2 = 4 · (2/3)k−2.

(c) We have 0 ≤ 2k/k! ≤ 4 · (2/3)k−2 (from (b)) and the geometric series∑∞
k=1 4 · (2/3)k−2 = 4

∑∞
k=1(2/3)k−2 exists (you should remember this

from Calculus, but we will also prove this in the next few days in the lec-
tures). So, the partial sums of the series

∑∞
k=1 2k/k! form an increasing

and bounded sequence and hence converge.

[There is also an easier argument using the comparison test. Try to find
it.]

11. Here we study
∑∞

k=1
k!
kk

.

(a) Prove that k! ≤ kk.
(b) Prove that k! ≤ 2kk−2.

(c) Deduce from (b) that
∑∞

k=1
k!
kk

exists.

6
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Solution. Here we look at
∑∞

k=1 k!/kk.

(a) k! = 1 · 2 · 3 · 4 · . . . · k ≤ k · k · k · k · . . . · k = kk.

(b) We can improve the estimate from a) slightly by keeping the first two
elements: k! = 1 · 2 · 3 · 4 · . . . · k ≤ 1 · 2 · k · k · . . . · k = 2kk−2.

(c) We have 0 ≤ k!/kk ≤ 2kk−2/kk = 2/k2 and one can show that
∑∞

k=1 2/k2

exists. (We will do this in the next few days in the lectures.) So, again,
the partial sums of

∑∞
k=1 k!/kk form an increasing and bounded sequence

and hence converge.

[Again, the comparison test would give an easier proof].

Note: In question 10(c) and 11(c), you were confronted with material which
we haven’t yet studied in this lecture course yet, but you should remember
these results from your Calculus class. I have included these questions on
purpose to train you to “think outside of the box” and, if necessary, look
things up elsewhere – important qualities of any independent mathematician
and important employability skills. (Of course, I am only doing this because
the homework is not contributing to your final mark.) Of course, you could
also prove that the geometric series in 6(c) and the series

∑∞
k=1 2/k2 in 7(c)

does indeed exist directly from the definition. In this case however, these
questions would be rather hard. . . but of course we will do exactly that in the
lecture course soon!

12. Assume that
∑∞

k=1 xk converges and that (yk)
∞
k=1 is a bounded sequence.

(a) Find a counterexample to the statement: “
∑∞

k=1 xkyk converges.”

(b) Prove that if we additionally assume that xk ≥ 0 for all k ∈ N, then the
series

∑∞
k=1 xkyk converges.

Solution.

(a) There are many counterexamples to the statement
∑∞

k=1 xkyk converges.
The easiest is when

∑∞
k=1 xk converges, but does not converge absolutely,

and (yk)
∞
k=1 is a sequence consisting of the values 1 and −1 in such a way

that xkyk = |xk|.

A concrete example is given by the following: Let xk = (−1)k+1 1
k . Then

(as we have seen in class),
∑∞

k=1 xk is the alternating harmonic series,
which we know exists (and has value log 2). Moreover, let yk = (−1)k+1.
Clearly this is bounded by −1 and 1. Moreover, xkyk = (−1)2k+2 1

k = 1
k ,

so
∑∞

k=1 xkyk =
∑∞

k=1
1
k is the harmonic series, which we have seen does

not converge.

7



Convergence and Continuity 2023–2024 Problem Sheet 5

(b) If xk ≥ 0, then |xk| = xk, so
∑∞

k=1 xk converges absolutely. As (yk) is
a bounded sequence, there exists some M ∈ R such that |yk| ≤ M for
all k ∈ N. Now for this M , we get from Lemma 4.6 that

∑∞
k=1M · xk

converges absolutely. Moreover, as 0 ≤ |xkyk| ≤ M |xk|, the comparison
test shows that

∑∞
k=1|xkyk| converges, and because absolute convergence

implies convergence, we have that
∑∞

k=1 xkyk converges. This proves the
claim.

13. For which values of x ∈ R do the following power series exist? Give a precise
answer and justify it.

(a)
∞∑
k=1

2kxk and (b)
∞∑
k=1

2kxk

k
.

Solution.

(a) Writing
∑∞

k=1 2kxk as
∑∞

k=1(2x)k we see it as a geometric series with
common ratio 2x. So the series converges when |2x| < 1, i.e., |x| < 1

2 ,
and does not converge when |2x| ≥ 1, i.e., |x| ≥ 1

2 ,

(b) When x = 1
2 , the series becomes the harmonic series

∑∞
k=1

1
k which we

know does not converge. Thus the radius of convergence R of the sequence
satisfies R ≤ 1

2 (Theorem 4.30). When x = −1
2 , the series becomes the

(negation of the) alternating harmonic series
∑∞

k=1(−1)k 1
k which we know

does converge. Thus the radius of convergence satisfies R ≥ 1
2 (Theorem

4.30 again). Summarising, the series converges when |x| < 1
2 and when

x = −1
2 , and does not converge when |x| > 1

2 and when x = 1
2 .

14. For which values of x ∈ R do the following power series exist? Give a precise
answer and justify it.

(a)
∞∑
k=1

xk

k2
and (b)

∞∑
k=1

kxk.

exist?

[Hint. One possibility for (b) is to use the easily checked inequality k ≤
α−1(1 + α)k, valid for all α > 0 and k ∈ N.]

Solution.

(a) This power series converges for all x with −1 ≤ x ≤ 1.

Again, one can argue directly: For |x| ≤ 1, we have 0 ≤ |x|k
k2
≤ 1

k2
and

thus convergence follows from the comparison test. If |x| > 1, then (x
k

k2
)

8
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is a sequence which does not converge to zero and hence the series cannot
exist, by Theorem 4.3.

To expand on the last step: Let zk = xk

k2
, so that (zk)

∞
k=1 is the sequence

of interest. Consider the sequence of ratios (zk/zk+1). Note that

zk
zk+1

=
1

x

(k + 1)2

k2
=

1

x

(
1 +

2

k
+

1

k2

)
.

Using by now familiar arguments, zk/zk+1 → 1/x and hence zk+1/zk → x.
If x > 1 then there exists K ∈ N such that zk+1/zk > 1 for all k > K.
So the sequence (zk) is increasing for k > K and does not converge to 0
(and indeed tends to ∞).

(b) When |x| ≥ 1, we have that the sequence (kxk)∞k=1 tends to ∞, and
in particular, the sequence does not converge to 0. Therefore the series∑∞

k=1 kx
k does not converge in this instance.

If |x| < 1, choose α > 0 to satisfy (1 +α)|x| < 1; e.g., let α = (1− x)/2x.
Now observe that

0 < |kxk| = k|x|k ≤ α−1(1 + α)k|x|k = α−1
(
(1 + α)|x|

)k
.

The series
∑∞

k=1

(
(1+α)|x|

)k
, being a geometric series with common ratio

less than 1, converges. By Lemma 4.6 and the comparison test,
∑∞

k=1 kx
k

converges.

9


