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Today's agenda

Today's lecture

@ Learn how simulation can be used to approximate integrals.

@ Learn how to compute numerically integrals in Bayesian inference
e.g., expectations, probabilities.

@ Learn two integration methods

o Basic Monte Carlo integration
o Monte Carlo integration.
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-ian inference

p(0 | y) o< p(0) p(y | 0)

Posterior distribution oc prior distribution x likelihood J

@ In the Bayesian framework, all our inferences about 6 are based on

the posterior distribution p(6 | y).

@ The posterior mean is
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Bayesian inference

o If 0 =(0,,...,0x) is a K-dimensional vector, then we might be
interested in the posterior for one of the components, 6,, say.
— - - =
a4

@ The marginal posterior density is

(0, | ) g/---/f(92,...,6Ky)dﬁ...d@K.
L~ —_ T

@ Sometimes it might be not feasible to calculate these integrals
analytically.

—

@ Simulation methods will often be helpful.

E—
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Example: Comparing two binomials

@ Suppose we havedata from a clinical trial of two treatments for a

| ]

serious illness.
@ [he data are the number of deaths after each treatment.

o Let the data be k; deaths out of n; patients, ¢ = 1,2 for the two

Al R e——

treatments.

@ The two unknown parameters are ¢; and ¢-, the probability of death
with each treatment. — —
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.xample: Comparing two binomials

@ We can assume that for each 7 = 1,2
ki ~ Bin(n;, g;)
w

@ Take as independent prior disgibutions

qi ~ Beta(ai,ﬁi), 1= 1,2

—

@ Then the posterior distributions are
g

™

q; | ]ﬁz ~ Beta(ki + o, n; — ]ﬂz —|-B7,), 1= 1,2
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Example: Comparing two binomials

@ For each ¢;, we have th‘gexact posterior, so we can make exact
inferences (point estimates and credible intervals) as in examples we
—— . —
have seen.

@ Suppose we want to know the posterior probaW

I( 59<Z;> PZZ?, Zs 111
A‘Z(éﬁa

P(g2 < q1 | k1, k2)

NS

@ Or suppose we want to estimate the difference i proportions
0 =q2 — q1.

@ There is no simple formula or beta distribution function we can use
now.

@ But we can use simulation (i.e. a Monte Carlo method).

- =
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Monte Carlo methods

@ Monte Carlo method refers to the theory and practice of using
random samples to approximate a quantity:

o Expectations.

o Integrals.

o Probabilities.

o Other summaries of distributions.

@ Named due to casinos in Monte Carlo.
— -
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-nte Carlo integration

@ Suppose we want to evaluate the integral §

@ Suppose we are unable to compute I in closed form.

C——

@ We can rewrite [ as
b
I:/ w(x)f(x)dr,
g a \/T-\J

where w(z) = h(z)(b — a), & a,b].
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- Carlo integration

@ Noticing that f is the pdf for a uniform random variable X ~ U(a, b)
b

[ = Ejw(X)].= w(#) {3(705?‘ [ 'FNU(W
— ¢ oL

o If we generateMiid from U(a,b), by the WLLN

L1 & P
I:N;w(Xi)%E[w(X)]:‘I, as N — oo.

\f\/\/

@ This is the basic Monte Carlo integration.

A N
Pl Tw(k), Kt VO

@ Hence,

L
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_o Integration

X~V(on)

_ xdxe—je* dﬁ")E )
0 Hﬁ "”}

o Let h(z) = x* and

@ Obviously, I =1/4.
@ Simulate from U(0,1), N = 10,000.

o Compute [ = -5 S g8 =0, 218 S‘ _R 0(?/
A LN
T: ,—\‘,’ Z > N L
- 3
.

E. Solea, QMUL MTHG6102: Bayesian Statistical Methods

3

766 [on:\




Monte Carlo integration

@ A generalisation of the basic Monte Carlo integration is to estimate
a quantity based on a probability distribution f.

@ We want to compute

- / dw_]i,cl AL

where f is the pdf of a random variable X
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_integration

@ Now, we generate an jid random sa f and use

this sample to estimate I by

A
I = Nzh(){i).

¥ >

o By the WLLN
-

[ 5 Bh(X) =1, asN — co.
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-: Monte Carlo integration

Plxen)=IE (Txen)
——— ~
o Let f(x) i@c@iﬁ} be the standard normal density.

o We want

I =®(zx)=P(X <x)= mf(s)ds, X ~ N(0,1),x € R.
1 I e —00

o We can rewrite v\(slf I (3¢ 7()

- [ mere s
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-: Monte Carlo integration

N
N :
1 | =4 Z I[Aaﬁ?ﬁ)
q g;Z(MKL\ Y, o LJ’U/\)
o We generate X,,..., X iid from N(0,1) and compute
~—~—
A number of observations less than x
I=— EZ: h(X,) = ~ .
w

o If z =2, then ®(2) = 0.9772 and I = 0.9781 with N = 10, 000.
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-te Carlo for Bayesian inference

Example:(bnmax_bﬂng_m binomials

k\l%%)» wﬂaa%)

@ Assume the flat prior on (¢, q.)

@ Recall that

p(¢i,q.) =1
W

@ Then the posterior distribution p(qi, g | ki, ks) is

p(le Q2 ’ kl) kQ) — Clel(l T Q1)n1_k1q;2(1 _ QQ)nQ_kQ.

N BN e N
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-omparing two binomials

o Note that p(gi, @z | ki, k2) = p(q | k1)p(g. | k).
\/V_\,

@ Thus, ¢, and g, are independent under the posterior.
=

o Also

p(q, | ki) ~ beta(1 + k,, 1 +ny — k),

—ee”

p(q | ky) ~ beta(1 + ky, 1 +no — ks).
/ ! —>
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- Comparing two binomials

@ We want to compute 0 = ¢, — ¢..= 9 (%\ ifa)
@ Note that75’|s random parameter Wlth posterior density p(d | ki, k)

@ We can estimate ¢ usmg its posterlor mean which is

@E

o«

ql,q2 // 9(q1,2)0(q1, G | kvy k) dgidgs,,

where g(gq;, Q2) =q, — q.

@ Not easy to do analytically but we can use Monte Carlo integration.

N
z 9 (2« Z"‘C}
C<|
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-mparing two binomials

@ Hence, using Monte Carlo, we can simulate an iid sample
(QM,QP),.. 7 (Q™, Q) from p(qy, gz | ki, ks) by drawing
~~—
iid ~ beta(1 4+ k,,1 +ny — k;) B
7)iid ~ beta(1 4+ k,,1 + no — k)

@ We can estimate [ by

- N N r\) .
DWW CARIDEES SR DEI RS
<1

e Covlo (nlegundean v
Moe/sfr(w\aé\dd o §=CoZr

E. Solea, QMUL MTHG6102: Bayesian Statistical Methods



Example: Comparing two binomials

@ Also, note tha@i =1,..., N can be viewed as an

iid sample from 9.
' <

@ Then the posterior density of 5,an be approximated

by plotting the histogram &f%z)g' L0,

o A 95% quantile credible intervals of § can be obtained by sorting the
simulated values and finding the 0.025 and 0.975 sample quantiles
of 61, ... 50, et
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_on: Comparing two binomials

o k, =8~ Bin(ni,q1), k; = 6 ~ Bin(na, ¢2).

@ Assume n, = n, = 10.

@ Describe how you would estimat@«@and
I = PW]CQ) using simple Monte Carlo integration. %
QL{'(

o Compute a 95% quantile credible interval for §. ﬁ("

_L ?[Z@< Z&l«)ﬂ(.ﬁs ‘JJICZSKZr P(Z7‘ ,«Z’//até)
P ey ey Z'I (9§

=1
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Board question: binomial data, flat prior

o Let k ~ binom(n,q).
@ Assume flat prior on q.

o Let n = 860 and k = 441

@ R code below
a=1
b=1
n=860
k=441
N=10000
beta.post.sample=rbeta(N, shapel=a+k,shape2=b+n-k)
gamma .sample=log((beta.post.sample/(1-beta.post.sample)))
mean (gamma . sample)

c(quantile(gamma ,0.025) ,quantile(gamma.sample,0.975))
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Board question: binomial data, flat prior

@/hen this code has run, what will beta.post.sample contain?
What will gamma . sample contain?

o Describe the estimator 6 for a quantity 6 (which you should also
determine) that would be obtained by the following R commands

gamma . sample=log((beta.post.sample/(1-beta.post.sample)))

mean (gamma . sample)

@ In statistical terms, what quantity will the last line of code output?

@ See also, Question 3, final exam Jan 2023
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