Lecture 8A
 MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture

- Learn how simulation can be used to approximate integrals.
- Learn how to compute numerically integrals in Bayesian inference e.g., expectations, probabilities.
- Learn two integration methods
- Basic Monte Carlo integration
- Monte Carlo integration.

Bayesian inference

$$
p(\theta \mid y) \propto p(\theta) p(y \mid \theta)
$$

Posterior distribution \propto prior distribution \times likelihood

- In the Bayesian framework, all our inferences about θ are based on the posterior distribution $p(\theta \mid y)$.
- The posterior mean is

Bayesian inference

- If $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)$ is a K-dimensional vector, then we might be interested in the posterior for one of the components, θ_{1}, say.

$$
\text { of } \theta
$$

- The marginal posterior density is

$$
p\left(\theta_{1} \mid y\right)=\iint \cdots \int \underbrace{f\left(\theta_{2}, \ldots, \theta_{K} \mid y\right) d \theta_{2} \ldots d \theta_{K} .}
$$

- Sometimes it might be not feasible to calculate these integrals analytically.
- Simulation methods will often be helpful.

Example: Comparing two binomials

- Suppose we havedata from a clinical trial of two treatments for a serious illness.
- The data are the number of deaths after each treatment.
- Let the data be k_{i} deaths out of n_{i} patients, $i=1,2$ for the two treatments.
- The two unknown parameters are q_{1} and q_{2}, the probability of death with each treatment.

Example: Comparing two binomials

- We can assume that for each $i=1,2$

- Take as independent prior distributions

$$
q_{i} \sim \operatorname{Beta}\left(\alpha_{i}, \beta_{i}\right), i=1,2
$$

- Then the posterior distributions are

$$
q_{i} \mid k_{i} \sim \operatorname{Beta}(\underbrace{k_{i}+\alpha_{i}}, n_{i}-k_{i}+\beta_{i}), i=1,2
$$

Example: Comparing two binomials

- For each q_{i}, we have the exact posterior, so we can make exact inferences (point estimates and credible intervals) as in examples we have seen.
- Suppose we want to know the posterior probability

- Or suppose we want to estimate the difference in proportions $\delta=q_{2}-q_{1}$.
- There is no simple formula or beta distribution function we can use now.
- But we can use simulation (ie. a Monte Carlo method).

Monte Carlo methods

- Monte Carlo method refers to the theory and practice of using random samples to approximate a quantity:
- Expectations.
- Integrals.
- Probabilities.
- Other summaries of distributions.
- Named due to casinos in Monte Carlo.

Basic Monte Carlo integration

- Suppose we want to evaluate the integral

$$
I=\int_{a}^{b} h(x) d x=\int_{a}^{h(x) b-a} \underbrace{\omega(x)} \underbrace{\frac{1}{b-x)}}_{\substack{b-a}} d x
$$

- Suppose we are unable to compute I in closed form.
- We can rewrite I as

$$
I=\int_{a}^{b} \underbrace{w(x) f(x)} d x
$$

where $w(x)=h(x)(b-a), f(x)=\frac{1}{b-a}, x \in[a, b]$.

Basic Monte Carlo integration

- Noticing that f is the pdf for a uniform random variable $X \sim \mathrm{U}(a, b)$
- Hence,

$$
\underbrace{I=E[w(x)]}=\int_{a} w(x) f(x) d x \text {, }
$$

- If we generate X_{1}, \ldots, X_{N} id from $\mathrm{U}(a, b)$, by the WLLN

$$
\underbrace{\hat{I}=\frac{1}{N} \sum_{i=1}^{N} \underbrace{w\left(X_{i}\right)}} \xrightarrow{P} E[w(X)]=I, \quad \text { as } N \rightarrow \infty .
$$

- This is the basic Monte Carlo integration.

$$
I=\frac{1}{N} \sum_{i=1}^{N} w\left(X_{c}\right), X_{11}, X_{n} \stackrel{11 d}{\sim} v(a, b)
$$

Basic Monte Carlo integration

- Let $h(x)=x^{3}$ and

$$
\begin{array}{r}
X \sim V(0,1) \\
I=\underbrace{\int_{0}^{1} x^{3} d x}=\int_{0}^{1} x^{3} f(x) d x=\mathbb{E}\left(x^{3}\right) \\
f(x) \sim v[0,1), \underbrace{N}=10,000 . \\
=0.248 \quad
\end{array}
$$

- Obviously, $I=1 / 4$.
- Simulate x_{1}, \ldots, x_{n} from $U(0,1), N=10,000$.
- Compute $\hat{I}=\frac{1}{10^{4}} \sum_{i=1}^{10^{4}} x_{i}^{3}=0.248$ show R code

$$
\begin{gathered}
I^{n}=\frac{1}{N} \sum_{i=1}^{N} h\left(x_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} x_{c}^{3}
\end{gathered}
$$ WLLN

Monte Carlo integration

- A generalisation of the basic Monte Carlo integration is to estimate a quantity based on a probability distribution f.
- We want to compute

$$
I=\int \underbrace{h(x) f(x)} d x=\underbrace{E[h(X)]}, \quad \underbrace{X \sim f}_{\sim}(x),
$$

where f is the pdf of a random variable X.

Monte Carlo integration

- Now, we generate an iid random sample $X_{i, \ldots}, \ldots X_{N}$ from f and use this sample to estimate I by

$$
\hat{I}=\frac{1}{N} \sum_{i=1}^{N} h\left(X_{i}\right) .
$$

- By the WLLN

$$
\hat{I} \xrightarrow{\hat{P}} E[h(X)]=I, \quad \text { as } N \rightarrow \infty .
$$

Example: Monte Carlo integration

$$
P(X \in A)=\mathbb{E}(\underbrace{(X \in A)})
$$

- Let $f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} x^{2}\right\}$ be the standard normal density.
- We want
- We can rewrite

$$
n(s)=I(s \leq x)
$$

$$
I=\int_{-\infty}^{\infty} h(s) f(s) d s
$$

where $h(s)=1$ if $s<x$ and $h(s)=0$ otherwise.

Example: Monte Carlo integration

$$
\frac{1}{N} \sum_{i=1}^{N} h\left(X_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} \underset{\underbrace{}_{i} \leq x)}{\left(X_{i} \leq x\right)}
$$

- We generate X_{1}, \ldots, X_{N} iid from $N(0,1)$ and compute

$$
\hat{I}=\underbrace{\frac{1}{N} \sum_{i=1}^{N} h\left(X_{i}\right)=\frac{\text { number of observations less than } \mathrm{x}}{N} ~}
$$

- If $\underbrace{x=2}$, then $\underbrace{\Phi(2)=0.9772}$ and $\underbrace{\hat{I}=0.9781}$ with $N=10,000$.

Monte Carlo for Bayesian inference

Example: Comparing two binomials

- Recall that

$$
k_{1} \sim \operatorname{Bin}\left(n_{1}, q_{1}\right), \quad k_{2} \sim \operatorname{Bin}\left(n_{2}, q_{2}\right)
$$

- Assume the flat prior on $\left(q_{1}, q_{2}\right)$

$$
\underbrace{p\left(q_{1}, q_{2}\right)=1}
$$

- Then the posterior distribution $p\left(q_{1}, q_{2} \mid k_{1}, k_{2}\right)$ is

$$
p\left(q_{1}, q_{2} \mid k_{1}, k_{2}\right)=\underbrace{c_{1} q_{1}^{k_{1}}\left(1-q_{1}\right)^{n_{1}-k_{1}} q_{2}^{k_{2}}\left(1-q_{2}\right)^{n_{2}-k_{2}} .}
$$

Example: Comparing two binomials

- Note that $p\left(q_{1}, q_{2} \mid k_{1}, k_{2}\right)=p\left(q_{1} \mid k_{1}\right) p\left(q_{2} \mid k_{2}\right)$.
- Thus, q_{1} and q_{2} are independent under the posterior.
- Also

$$
\frac{p\left(q_{1} \mid k_{1}\right)}{p\left(q_{2} \mid k_{2}\right)} \sim \underset{\operatorname{beta}\left(1+k_{1}, 1+n_{1}-k_{1}\right)}{\operatorname{beta}\left(1+k_{2}, 1+n_{2}-k_{2}\right) .}
$$

Example: Comparing two binomials

- We want to compute $\delta=q_{2}-q_{1}=g\left(q_{1} q_{2}\right)$
- Note that δ is random parameter with posterior density $p\left(\delta \mid k_{1}, k_{2}\right)$
- We can estimate δ using its posterior mean which is

$$
\begin{aligned}
T=E(\delta) & =\underline{E\left(q_{2}-q_{1}\right)} \\
& =E\left(g\left(q_{1}, q_{2}\right)\right)=\int_{0}^{1} \int_{0}^{1} g\left(q_{1}, q_{2}\right) p\left(q_{1}, q_{2} \mid k_{1}, k_{2}\right) d q_{1} d q_{2}
\end{aligned}
$$

where $g\left(q_{1}, q_{2}\right)=q_{2}-q_{1}$.

- Not easy to do analytically but we can use Monte Carlo integration.

Example: Comparing two binomials

- Hence, using Monte Carlo, we can simulate an id sample $\left(\left(Q_{1}^{(1)}, Q_{2}^{(1)}\right), \ldots,\left(Q_{1}^{(N)}, Q_{2}^{(N)}\right)\right.$ from $p\left(q_{1}, q_{2} \mid k_{1}, k_{2}\right)$ by drawing

$$
\begin{aligned}
& \rightarrow Q_{1}^{(1)}, \ldots, Q_{1}^{(n)} \text { iid } \sim \operatorname{beta}\left(1+k_{1}, 1+n_{1}-k_{1}\right) \\
& \Rightarrow Q_{2}^{(1)}, \ldots, Q_{2}^{(n)} \text { fid } \sim \operatorname{beta}\left(1+k_{2}, 1+n_{2}-k_{2}\right)
\end{aligned}
$$

- We can estimate I by

$$
\hat{I}=\underbrace{\frac{1}{N} \sum_{i=1}^{N} g\left(Q_{1}^{(i)}, Q_{2}^{(i)}\right)}_{\text {Monte Carlo integration }}=\frac{1}{N} \sum_{i=1}^{N}(\underbrace{\left(Q_{2}^{(i)}-Q_{1}^{(i)}\right.}_{\text {esfomatol of } \delta})=\frac{1}{N} \sum_{i=1}^{N} \delta(i)
$$

Example: Comparing two binomials

- Also, note that $\delta^{(i)}=Q_{2}^{(i)}-Q_{2}^{(2)}, i=1, \ldots, N$ can be viewed as an iid sample from δ.
- Then the posterior density of $\delta,\left(\rho\left(\delta \mid k_{1}, k_{2}\right)\right.$ can be approximated by plotting the histogram of $\delta^{(1)}, \ldots, \delta^{(N)}$.
- A 95% quantile credible intervals of δ can be obtained by sorting the simulated values and finding the 0.025 and 0.975 sample quantiles of $\delta^{(1)}, \ldots, \delta^{(N)}$.

Board question: Comparing two binomials

- $k_{1}=8 \sim \operatorname{Bin}\left(n_{1}, q_{1}\right), k_{2}=6 \sim \operatorname{Bin}\left(n_{2}, q_{2}\right)$.
- Assume $n_{1}=n_{2}=10$.
- Describe how you would estimate $\delta=q_{2}-q_{1}$ and $I=P\left(q_{2}<q_{1} \mid k_{1}, k_{2}\right)$ using simple Monte Carlo integration.
- Compute a 95% quartile credible interval for δ.

$$
\begin{aligned}
& =\operatorname{IE}\left(I\left(q_{2}<q_{1}\right)\right)
\end{aligned}
$$

$$
I=P\left(\varepsilon_{2}<\tau_{2} \mid \varepsilon_{1} x_{2}\right)=\iint_{\sim}^{N} I\left(\varepsilon_{2}<\varepsilon_{7}\right) p\left(q_{1} q_{2} \mid x_{1} x_{1} x_{2}\right)
$$

By $M C_{1} \quad \hat{I}=\frac{1}{N} \sum_{i=1}^{N} I\left(\varphi_{a}^{\left(c^{c}\right)}<Q_{1}^{(c)}\right)$

Board question: binomial data, flat prior

- Let $k \sim \operatorname{binom}(n, q)$.
- Assume flat prior on q.
- Let $n=860$ and $k=441$
- R code below
$\mathrm{a}=1$
b=1
$\mathrm{n}=860$
$\mathrm{k}=441$
$\mathrm{N}=10000$
beta.post.sample=rbeta (N, shape1=a+k, shape2=b+n-k)
gamma.sample=log((beta.post.sample/(1-beta.post.sample)))
mean(gamma.sample)
$c(q u a n t i l e($ gamma sample, 0.025$)$, quantile (gamma. sample, 0.975))

Board question: binomial data, flat prior

- When this code has run, what will beta. post. sample contain? What will gamma.sample contain?
- Describe the estimator $\hat{\theta}$ for a quantity θ (which you should also determine) that would be obtained by the following R commands
gamma.sample=log((beta.post.sample/(1-beta.post.sample))) mean(gamma.sample)
- In statistical terms, what quantity will the last line of code output?
- See also, Question 3, final exam Jan 2023
- A sample, θ_{1}, On, from the postenor density

$$
p(q \mid x) \sim \operatorname{beta}^{2}(1+x y, 1+n-x)
$$

It contains, $\log \left(\frac{\theta i}{\left[-\theta_{i}\right.}\right)$ sample $i=1, N$ which can be rewed as on ind sample from

$$
\log \left(\frac{q}{1-q}\right)(\log \text { of } o d d s)
$$

