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Today's agenda

Today's lecture will

@ Review of noninformative priors

@ Learn informative priors

@ Be able to make a reasonable choice of informative prior, based on
external data.

@ Learn that the choice of prior affects the posterior.

@ See that more data lessens the dependence of the posterior on the
prior.
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_ions

@ The prior distribution plays a defining role in Bayesian analysis.

@ There are two types of priors: noninformative and informative.
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Noninformative prior

@ A noninformative prior represents our ignorance or lack of
information about 6 before the experiment.

@ Non-informative prior: “let the data speak for themselves".

@ An obvious candidate for a noninformative prior is to use a flat or
uniform prior over some range, p(f) x c.

o It is flat relative to the range of the likelihood. Assumes that every
hypothesis is equally probable.

@ Flat priors are not invariant under nonlinear one-to-one
transformations g
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Noninformative Jeffreys prior

@ Another example of noninformative prior is Jeffreys prior defined as

p(0) o< I(6),

where I(0) is the Fisher information function given by (under some
regularity conditions)

d2
do?
and p(X60) is the likelihood function.

1(0) = —E[ logp(X\H)],

=1
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-tive Jeffreys prior

o Jeffreys prior is invariant under nonlinear, smooth, one-to-one
transformations g because -

I(¥) = I1(6) (CZH)Q s IV rance

D property

where 1 = ¢g(0).
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Noninformative prior

o Advantages

@ sometimes used as benchmark that will not reflect the bias of the
analyst.
@ hppropriate when little is known on the underlying processes.
@ can be used in situations where scientific objectivity is at a premium,
/ Ll Ll L] L okl
for example, when presenting results to a regulator or in a scientific
journal,

o Disadvantages
@ may lead to improper priors
@ Flat priors are not invariant under nonlinear one-to-one
transformations g
@ the definition of knowing little may depend on different
parameterizations (should 6 be assumed to be uniform or should
perhaps the logarithm of  be assumed to be uniform?)

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Informative prior

@ Informative priors include some judgement concerning plausible
values of the parameters based on external information.

@ Informative priors can be based on pure judgement, a mixture of
data and judgement, or external data alone.

@ An informati jor distribution ¢s one in which the probability
mass_is concentrated in some subset of the possible range for the
parameters. -
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Informative prior

@ There are many ways to build an informative prior. For example,
using summary statistics, published estimates, iptervals or standard
errors.

@ We can match these quantities to the mean, median standard
deviation or percentiles of the prior distribution.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Example: Building an informative prior

Exponential /Gamma example

") Le Expi?) denote the lifetimes of lightbulbs.

o The,gmn___,uadlsfcb.u_t_lgn is conjugate to the exponential likelihood
for A (failure_rate).
"?‘_‘_A'

@ Suppose we have external information from other similar bulbs with

VAR o "
@et@and@?e the mean and variance of respectively.

o Goal: Build a prior gamma(a, 3) distribution for A using external

information information. [ [
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Example: Building an informative prior

Exponential/Gamma example

\L'
@ We can use the method of moments to match the mean and the / Msl\'

yariance of the prior gamma distribution with the correspondlng m
and v 6@:\ 60@\'“?},4&&
@ Thatis e o b (‘
i _
m=g. U= g ) a/g (I'LW\@

e,

@ Solve for a and (‘/LW\[ MG W\K/

/8 p— o = —
u - M
| = 8=
@ Thus, our prior for A is gamma(™~, ™). Q
T o= W
W
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Informative prior

@ Advantages

@ often analytically convenient (esp for conjugate priors).
@ can take advantage of your informed understanding, beliefs,
experience and external data

o Disadvantages
@ not always easy to quantify the state of knowledge
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Board example: Building an informative prior

Binomial /beta example
— )

@ Suppose we flip the coin n times and observe k£ heads with q the
LN ] \d
probability of heads.

7
o A beta(a, 3) distribution is chosen as the prior distribution for g. (Ut’lj

@ Based on external information and published statistics, the prior

~mean is 0.4 and the prlor standard deviation is 0.2.
/

Q Fmd the prior distribution corresponding to this belief.

o See alsq Question 2, final exam 2020
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Weakly informative prior distributions

@ Instead of trying to make the prior completely uniformative, an
alternative is to convey some information about the plausible range
of the parameters, e.g., exclude implausible values.

@ Otherwise let the data speak for themselves.

@ For models with large numbers of parameters, adding a little prior
information may help with numerical stability.
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The choice of prior affects the posterior

@ In the Bayesian framework, all our inferences about 6 are based on
the posterior distribution p(6 | y).

Posterior distribution oc prior distribution x likelihood )

@ Including summaries such as point estimates and credible intervals.

@ So our inference depends on the prior distribution as well as the data
via the likelihood.

@ The choice of prior affects the posterior.

[ )

o More data, lessens the depzndence of the posterior on the prior.

L ——
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-al example, known variance

o Observed data y1,...,y, ~ N(u,o?).
——
o Prior distribution 1 ~ N(po,05).

@ The posterior distribution is

=

uly~ N(pi,o7)

[ -

L] 1 n
“1—((73%2 / agW)
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.Iormal example: Posterior mean

@ The posterior mean w1 can be written as a weighted average of the
prior mean o and the sample mean y

M1 = (1 o w):uo + wgv

atm— ———

where

n <1+n) ol
w = — p— .
2 2 2 o2 2

w — 1 ar og — 00, so the posterior mean approaches the
(1 — o3 pr oy p PP

ey
sample mean.
.——/.-q

N> P>y

(6o 123
0 A T

>
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Normal example: Likelihood and prior

@ When deriving the posterior distribution, we saw that the likelihood

p(y | 1)

is proportional to a
52
N (g, —) pdf for u
n
M

if considered as a function of u.

o If we compare@to the prior variance this helps to understand

how the posterior behaves.
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Informative and uninformative prior distributions

Normal example with known variance

Prior distribution

Q An.Lnformawe prior Likelihood — — —
distribution is strongly peaked Posterior d1str1but10n
around some value. \«’@S\ k%&\’
@ Prior changes its value over the Sz’ f \
. . | \
range of the likelihood. 9\%‘“ | \{/
. . N \
o Posterior is shifted relative to \ AR
\ S \
likelihood. ,‘/ // \\ \\
AV
2 JoA N
/NN

02 = 0.5, % = 0.25
= D
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Informative and uninformative prior distributions

Normal example with known variance

@ A weakly or slightly informative Prior distribution ---------
Likelihood ———

prior. o RO
Posterior distribution

@ Only changing gradually over

the range of the likelihood. A
@ When the data provide a lot / \\
more information than the prior. // \\
o Posterior is only slightly shifted // \\
relative to likelihood. J— _/( ~~~~~ \\

- 2 __——"'——— Tl
, J N
@. — 0.25 B )

This prior is dominated by the likelihood and they give similar posterior.
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-ormative and uninformative prior distributions

Normal example with known variance

Prior distribution --------- -
Likelihood ——— N[tjlé;}

@ A very weakly informative prior,

| t flat ori — Posterior distribution ( |
almost flat prior
P N( P'l&g]
@ Almost flat over the range of /\
the likelihood II
o Posterior practically ll
proportional to likelihood. /
o’ / \
=025 e e \ -----------

L
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Informative and uninformative prior distributions

Beta prior/binomial data example

o Likelihood: k ~ binom(n, q)

N

@ Prior on ¢: p(q) ~ beta(e, 5), ¢ € (0,1).
o Posterior, p(q|k) = beta(a + k, 8 +n — k).
@ When a = =1, q ~U|0, 1] or beta(1,1).
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.formative and uninformative prior distributions

Beta prior/binomial data example
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more data lessens the dependence of the posterior on the prior.




Concept question: Normal/normal example

Question 2(a) from final exam Jan 2021

@ We have data y = (yy,...,y,) from N(0,0%), where 0 = 2.
@ Prior distribution, p(6) ~ N(0,0?).
—

@ Question: For an uninformative prior, do we need a large or small
value for the prior standard deviation o7

'ﬁv [0 stndavd deviakion. Cofeepands

H o \e,ss mgorwu)cwc pYior oY
QM Ndovmadwe Do
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Concept question: Normal/normal example

Question 2(a) from final exam Jan 2023

@ Same normal/normal example with previous exampl'e}.

@ Question: As the prior distribution becomes less informative, what
value does the posterior mean for 6 approach? As the prior
distribution becomes more informative, what value does the
posterior mean for 6 approach?

to o (eSS
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