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Today’s agenda

Today’s lecture will

Review of noninformative priors

Learn informative priors

Be able to make a reasonable choice of informative prior, based on

external data.

Learn that the choice of prior a�ects the posterior.

See that more data lessens the dependence of the posterior on the

prior.
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Prior distributions

The prior distribution plays a defining role in Bayesian analysis.

There are two types of priors: noninformative and informative.
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Noninformative prior

A noninformative prior represents our ignorance or lack of

information about ◊ before the experiment.

Non-informative prior: “let the data speak for themselves".

An obvious candidate for a noninformative prior is to use a flat or

uniform prior over some range, p(◊) Ã c.

It is flat relative to the range of the likelihood. Assumes that every

hypothesis is equally probable.

Flat priors are not invariant under nonlinear one-to-one

transformations g
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Noninformative Je�reys prior

Another example of noninformative prior is Je�reys prior defined as

pJ(◊) Ã
p

I(◊),

where I(◊) is the Fisher information function given by (under some

regularity conditions)

I(◊) = ≠E
h d2

d◊2
log p(X|◊)

i
,

and p(X|◊) is the likelihood function.
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Noninformative Je�reys prior

Je�reys prior is invariant under nonlinear, smooth, one-to-one

transformations g because

I(Â) = I(◊)
✓

d◊

dÂ

◆2

.

where Â = g(◊).
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Noninformative prior

Advantages
1 sometimes used as benchmark that will not reflect the bias of the

analyst.
2 appropriate when little is known on the underlying processes.
3 can be used in situations where scientific objectivity is at a premium,

for example, when presenting results to a regulator or in a scientific
journal,

Disadvantages
1 may lead to improper priors
2 Flat priors are not invariant under nonlinear one-to-one

transformations g
3 the definition of knowing little may depend on di�erent

parameterizations (should ◊ be assumed to be uniform or should
perhaps the logarithm of ◊ be assumed to be uniform?)
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Informative prior

Informative priors include some judgement concerning plausible

values of the parameters based on external information.

Informative priors can be based on pure judgement, a mixture of

data and judgement, or external data alone.

An informative prior distribution os one in which the probability

mass is concentrated in some subset of the possible range for the

parameters.
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Informative prior

There are many ways to build an informative prior. For example,

using summary statistics, published estimates, intervals or standard

errors.

We can match these quantities to the mean, median standard

deviation or percentiles of the prior distribution.
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Example: Building an informative prior

Exponential/Gamma example

Let t1, . . . , tn ≥ Exp(⁄) denote the lifetimes of lightbulbs.

The gamma distribution is conjugate to the exponential likelihood

for ⁄ (failure rate).

Suppose we have external information from other similar bulbs with

observed failure rates r1, . . . , rK .

Let m and u be the mean and variance of r1, . . . , rK , respectively.

Goal: Build a prior gamma(–, —) distribution for ⁄ using external

information information.
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Example: Building an informative prior

Exponential/Gamma example

We can use the method of moments to match the mean and the

variance of the prior gamma distribution with the corresponding m
and u

That is

m = –

—
, u = –

—2

Solve for – and —

— = m

u
, – = m2

u
.

Thus, our prior for ⁄ is gamma( m2

u , m
u ).
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Informative prior

Advantages
1 often analytically convenient (esp for conjugate priors).
2 can take advantage of your informed understanding, beliefs,

experience and external data

Disadvantages
1 not always easy to quantify the state of knowledge
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Board example: Building an informative prior

Binomial/beta example

Suppose we flip the coin n times and observe k heads with q the

probability of heads.

A beta(–, —) distribution is chosen as the prior distribution for q.

Based on external information and published statistics, the prior

mean is 0.4 and the prior standard deviation is 0.2.

Find the prior distribution corresponding to this belief.

See also Question 2, final exam 2020
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Weakly informative prior distributions

Instead of trying to make the prior completely uniformative, an

alternative is to convey some information about the plausible range

of the parameters, e.g., exclude implausible values.

Otherwise let the data speak for themselves.

For models with large numbers of parameters, adding a little prior

information may help with numerical stability.
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The choice of prior a�ects the posterior

In the Bayesian framework, all our inferences about ◊ are based on

the posterior distribution p(◊ | y).

p(◊ | y) Ã p(◊) p(y | ◊)

Posterior distribution Ã prior distribution ◊ likelihood

Including summaries such as point estimates and credible intervals.

So our inference depends on the prior distribution as well as the data

via the likelihood.

The choice of prior a�ects the posterior.

More data, lessens the dependence of the posterior on the prior.
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Normal example, known variance

Observed data y1, . . . , yn ≥ N(µ, ‡2).
Prior distribution µ ≥ N(µ0, ‡2

0).
The posterior distribution is

µ | y ≥ N(µ1, ‡2
1)

µ1 =
✓

µ0
‡2

0
+ nȳ

‡2

◆�✓ 1
‡2

0
+ n

‡2

◆

‡2
1 = 1

�✓ 1
‡2

0
+ n

‡2

◆

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Normal example: Posterior mean

The posterior mean µ1 can be written as a weighted average of the

prior mean µ0 and the sample mean ȳ

µ1 = (1 ≠ w)µ0 + wȳ,

where

w = n

‡2

�✓ 1
‡2

0
+ n

‡2

◆
= ‡2

0
‡2

n + ‡2
0

.

w æ 1 as n æ Œ or ‡0 æ Œ, so the posterior mean approaches the

sample mean.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Normal example: Likelihood and prior

When deriving the posterior distribution, we saw that the likelihood

p(y | µ)

is proportional to a

N

✓
ȳ,

‡2

n

◆
pdf for µ

if considered as a function of µ.

.

If we compare
‡2

n
to the prior variance ‡2

0 , this helps to understand

how the posterior behaves.
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Informative and uninformative prior distributions

Normal example with known variance

An informative prior

distribution is strongly peaked

around some value.

Prior changes its value over the

range of the likelihood.

Posterior is shifted relative to

likelihood.

‡2
0 = 0.5,

‡2

n
= 0.25

µ

Prior distribution
Likelihood

Posterior distribution
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Informative and uninformative prior distributions

Normal example with known variance

A weakly or slightly informative

prior.

Only changing gradually over

the range of the likelihood.

When the data provide a lot

more information than the prior.

Posterior is only slightly shifted

relative to likelihood.

‡2
0 = 5,

‡2

n
= 0.25

µ

Prior distribution
Likelihood

Posterior distribution

This prior is dominated by the likelihood and they give similar posterior.
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Informative and uninformative prior distributions

Normal example with known variance

A very weakly informative prior,

almost flat prior

Almost flat over the range of

the likelihood

Posterior practically

proportional to likelihood.

‡2
0 = 20,

‡2

n
= 0.25

µ

Prior distribution
Likelihood

Posterior distribution
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Informative and uninformative prior distributions

Beta prior/binomial data example

Likelihood: k ≥ binom(n, q)
Prior on q: p(q) ≥ beta(–, —), q œ (0, 1).
Posterior, p(q|k) = beta(– + k, — + n ≠ k).
When – = — = 1, q ≥U[0, 1] or beta(1, 1).
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Informative and uninformative prior distributions

Beta prior/binomial data example
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more data lessens the dependence of the posterior on the prior.
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Concept question: Normal/normal example

Question 2(a) from final exam Jan 2021

1 We have data y = (y1, . . . , yn) from N(◊, ‡2), where ‡ = 2.

2 Prior distribution, p(◊) ≥ N(0, ‡2
0).

3 Question: For an uninformative prior, do we need a large or small

value for the prior standard deviation ‡0?
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Concept question: Normal/normal example

Question 2(a) from final exam Jan 2023

1 Same normal/normal example with previous examples.

2 Question: As the prior distribution becomes less informative, what

value does the posterior mean for ◊ approach? As the prior

distribution becomes more informative, what value does the

posterior mean for ◊ approach?
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