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Today’s agenda

Today’s lecture

Review

Understand Markov Chain

Understand Metropolis-Hastings

Apply Metropolis-Hastings in Bayesian inference to generate samples
from the posterior pdf.
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Review: Monte Carlo integration

The Monte Carlo integration refers to the theory and practice of
approximating integrals using random samples.

Monte Carlo integration methods are sometimes referred to as
stochastic integration methods because they are based on random
sampling.
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Example

Suppose that we wish to compute the following integral

I =
Z 1

0

sin(x(1 ≠ x))
1 + x + Ô

x
dx.

There does not appear to be any closed-form solution, so we can
approximate the integral using Monte Carlo methods.
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Example

Plot of the function h(x) = sin(x(1≠x))
1+x+Ô

x
, x œ [0, 1],
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Using a deterministic numerical integration method in R based on
adaptive quadrature of functions, I = 0.079.

>h=function(x) sin(x*(1-x))/(1+x+sqrt(x))
>integrate(h,lower=0,upper=1)
>0.07852747 with absolute error < 9.2e-06
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Example

Goal: Compute the integral I using Monte Carlo integration

The integral, I, can be written as the expectation of h(X), where
X ≥ U [0, 1] and

h(x) = sin(x(1≠x))
1+x+Ô

x
, x œ [0, 1].

Because,

I =
Z 1

0

sin(x(1 ≠ x))
1 + x + Ô

x
· 1 dx =

Z 1

0
h(x)f(x) dx = E(h(X)),

where f(x) = 1, x œ [0, 1] is the U [0, 1] density.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods





Example

Thus, we can generate IID observations X1, . . . , XN from U [0, 1],
and estimate I by

Î = 1
N

NX

i=1

h(Xi) = 1
N

NX

i=1

sin(Xi(1 ≠ Xi))
1 + Xi +

Ô
Xi

.

Î is the Monte Carlo integration estimator of I = E(h(X)),
X ≥ U [0, 1].
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Example

Then, the weak law of large numbers (WLLN) says

Î = 1
N

NX

i=1

h(Xi) P≠æ I, N æ Œ,

As we use more samples N , Î should get more and more accurate.
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Example

In R

h=function(x) sin(x*(1-x))/(1+x+sqrt(x))
x=runif(1000)
mean(h(x))

Î = 0.081, and it is the Monte Carlo estimate of the integral I.
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Bayesian inference

Quite often a quantity of interest in statistics may be expressed as
an integral that we wish to evaluate.
For instance, in Bayesian analysis, one is often interested in the
posterior mean of a particular continuous parameter ◊

◊̂B =
Z

◊ p(◊ | y) d◊,

or in the posterior mean of transformed parameters Â = g(◊)

Â̂B =
Z

g(◊) p(◊ | y) d◊,

or in the posterior probability,

P (◊ Æ c) =
Z c

≠Œ

p(◊ | y) d◊ =
Z Œ

≠Œ

I(◊ Æ c) p(◊ | y) d◊ = E(I(◊ Æ c)).
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Board example: Poisson data/Gamma prior

Suppose we observe iid data y1, . . . , yn from Poisson(⁄).
Let ⁄ have the gamma(–, —) prior distribution, the conjugate prior
distribution for the Poisson likelihood.

1 What is the posterior density, p(⁄ | y) of ⁄?

2 How would you estimate the posterior probability P (⁄ < c) by

Monte Carlo integration, for some c > 0?
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Board question: Binomial data/flat prior

Let k ≥ binom(n, q).
Assume flat prior on q.
Let n = 860 and k = 441
R code below
a=1
b=1
n=860
k=441
N=10000
beta.post.sample=rbeta(N, shape1=a+k,shape2=b+n-k)
gamma.sample=log((beta.post.sample/(1-beta.post.sample)))
mean(gamma.sample)
c(quantile(gamma.sample,0.025),quantile(gamma.sample,0.975))
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Board question: Binomial data/flat prior

When this code has run, what will beta.post.sample contain?
What will gamma.sample contain?

Describe the estimator ◊̂ for a quantity ◊ (which you should also
determine) that would be obtained by the following R commands

gamma.sample=log((beta.post.sample/(1-beta.post.sample)))
mean(gamma.sample)

In statistical terms, what quantity will the last line of code output?

See also, Question 3, final exam Jan 2023
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Markov Chain Monte Carlo (MCMC)

Monte Carlo integration estimates Ef [h(X)] by directly sampling iid
samples from the pdf f or from the posterior pdf in Bayesian
inference

Î = 1
N

NX

i=1

h(Xi), X1, . . . , Xn iid ≥ f.

Question: But what if we cannot sample directly from f?
- f is not analytically tractable.
- Then, simple Monte Carlo integration cannot be used.
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MCMC can help when f is intractable

Markov Chain Monte Carlo (MCMC) is a set of methods that can
generate a sample with pdf f without having to sample from f
directly.

Thus, MCMC can be used to generate samples from complicated
probability distributions.

At the price, however, of yielding dependent observations that are
approximately from f .
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Markov Chain Monte Carlo (MCMC)

The general idea of Markov Chain Monte Carlo (MCMC) methods
is to construct a sequence of RV X1, X2 . . . ,, called Markov chain,
which (hopefully) converges to the distribution of interest f .

However, X1, X2 . . . , is NOT independent any more.

But it can still be used to estimate quantities (e.g, mean) because
there is a WLLN for Markov chains.
Under certain conditions,

Î = 1
N

NX

i=1

h(Xi) P≠æ E[h(X)] = I, as N æ Œ.
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Markov chains

What is a Markov Chain?

Definition (Markov Chain). A Markov chain is a sequence
X1, X2, . . . of random variables such that the probability distribution
of Xi (pmf or pdf) only depends on the previous value Xi≠1

p(Xi | X1, X2, . . . Xi≠2, Xi≠1) = p(Xi | Xi≠1).

The process depends on the past only through the present.
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Example: Random walk

As an example of a Markov chain, suppose X1 = 1, and for i > 1

P (Xi = Xi≠1 + 1) = 1/2,

P (Xi = Xi≠1 ≠ 1) = 1/2.

This is a random walk starting at X1 = 1.

It can go o� towards ≠Œ or Œ without limit.
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Example: Random walk

So you flip a coin move +1 steps if heads, move -1 steps if tails.

At step i of this Markov chain, Xi≠1 is either increased or decreased
by 1.

Each possibility happens with probability 1
2 .
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Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a type of Markov chain Monte
Carlo (MCMC) that works as follows.

Let q(y|x) be a conditional density that we know how to sample
from.

q(y|x) is called the proposal distribution.

The Metropolis-Hastings algorithm creates a Markov Chain
(dependent observations) X1, X2, . . . as follows.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Metropolis-Hastings algorithm

Choose X1 arbitrarily. Suppose we have generated X1, . . . , Xi. To
generate Xi+1 do the following:

1 Generate a proposal or candidate random value Y ≥ q(y|Xi).
2 Evaluate r © r(Xi, Y ) where

r(x, y) = min
nf(y)

f(x)
q(x|y)
q(y|x) , 1

o
.

3 Generate U ≥ U(0, 1). If U Æ r, set Xi+1 = Y , otherwise set
Xi+1 = Xi.
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Metropolis algorithm terminology

q is the proposal distribution: we propose new rv Y using the
conditional distribution q(· | Xi) that depends on Xi (not on the
past).

MH accepts Y with probability
r © r(Xi, Y ) = min

n
f(Y )
f(Xi)

q(Xi|Y )
q(Y |Xi) , 1

o
, called the acceptance

probability.
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Metropolis algorithm terminology

f is sometimes called the target distribution: this is what we are
aiming for, i.e. we want to generate a sample with pdf f .

In Bayesian inference, f would be the posterior distribution p(◊ | y),
and we want a sample of ◊ values from this posterior distribution.
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Choosing events in computer code

Remarks:
In general, to implement a random event that happens with
probability r:
Generate u ≥ Uniform(0, 1);
Event happens if u Æ r.
If U is a random variable, with U ≥ Uniform(0, 1), then U has cdf
F (r) = r, so P (U Æ r) = r.
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Metropolis-Hastings algorithm

Remarks:

A common choice for q(y|x) is N(x, b2) for some b > 0.

This means that the proposal Y is a drawn from normal centered at
the current value.

By symmetry, q(y|x) = q(x|y)

r(x, y) = min
nf(y)

f(x) , 1
o

.
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Metropolis-Hastings algorithm

Remarks:
In the algorithm, f only appears in acceptance probability

r(Xi, Y ) = min
⇢

1,
f(Y )
f(Xi)

�
.

The acceptance probability does not depend on the
normalisation constant, i.e. if f(x) = cg(x), where c > 0 doesn’t
depend on x, then

r(Xi, Y ) = min
⇢

1,
g(Y )
g(Xi)

�
.

So we only need to know f up to a normalisation constant. Useful
for Bayesian inference!
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Output of the Metropolis-Hastings algorithm

1 The Metropolis-Hastings algorithm generates a dependent sequence
of observations X1, X2, . . . .

2 Since our procedure for generating Xi+1 depends only on Xi, the
conditional distribution of Xi+1 given X1, . . . , Xi depends only on
Xi.

3 Hence, the sequence X1, X2, . . . is a Markov chain.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Output of the Metropolis-Hastings algorithm

The chain X1, X2, . . . has the property that:
if Xi≠1 ≥ f , then Xi ≥ f .

f is the equilibrium distribution or stationary of the chain.

However, we don’t start with X1 ≥ f (because if we could, we
wouldn’t need this algorithm).

But for large enough i, if some technical conditions are met, then
each Xi ≥ f approximately.
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Output of the Metropolis-Hastings algorithm

1 In practice, we only generate X1, X2, . . . , XN for some large N .

2 Under some conditions, the empirical distribution of X1, X2, . . . , XN

approximates f well if N is large.

3 Hence, we can approximate the integral I =
R

h(x)f(x) dx using the
approximated X1, X2, . . . , XN , that is

1
N

NX

i=1

h(Xi), X1, X2, . . . , XN ≥ f (approximately),

and X1, X2, . . . , XN generated by MH.
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Example: Metropolis-Hastings algorithm

The Cauchy distribution has density

f(x) = 1
fi(1 + x2)

Our goal is to simulate a Markov chain whose stationary distribution
is f .
Take q(y|x) to be N(x, b2) for some b > 0.
Then,

r(x, y) = min
n1 + x2

1 + y2
, 1
o

.

Let r = r(Xi, Y ). Generate U ≥ U(0, 1). If U Æ r, set Xi+1 = Y ,
otherwise set Xi+1 = Xi.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Example: Metropolis-Hastings algorithm
Figure below shows the chains of length N = 1000 using b = 1
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Example: Metropolis-Hastings algorithm
Figure: Histogram of chains and the plot of the Cauchy density (red)
The distribution of chain converges to the desired Cauchy
distribution.

empirical distribution of the chain
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Relevance to Bayesian inference

Let f be the posterior pdf, p(◊ | y): this is the distribution we want
to sample from.

Let q(Â|◊i) be a pdf for the proposal Â which is symmetric in Â and
◊, e.g., normal N(◊i, b2).

The algorithm constructs a Markov chain ◊1, ◊2, . . . , where the ◊i

are continuous rvs (in our applications).
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Relevance to Bayesian inference

q is called the proposal distribution: it is used to generate the next
possible point in the Markov chain.
q is often taken as a normal distribution centred on the current point

Âi ≥ N(◊i, b2), for some b > 0.

The normal pdf is symmetric in ◊ and Â, as required by the
algorithm

q(Â | ◊) = 1Ô
2fib

e
≠

(Â ≠ ◊)2

2b2 = 1Ô
2fib

e
≠

(◊ ≠ Â)2

2b2 = q(◊ | Â).

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Relevance to Bayesian inference

The algorithm constructs a Markov chain ◊1, ◊2, . . . as follows:
Start with arbitrary ◊1.
For each i > 1, generate Âi from distribution q(Â | ◊i).
Let

r = min
⇢

1,
p(Â | y)
p(◊i | y)

�

Set

◊i+1 =
(

Â with probability r

◊i with probability 1 ≠ r
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Relevance to Bayesian inference

In Bayesian inference, the posterior density is

p(◊ | y) Ã p(◊) p(y | ◊)

It’s di�cult to find the normalizing constant
Z

p(◊) p(y | ◊) d◊

We don’t need to find this, we just put g(◊) = p(◊) p(y | ◊), use g in
the algorithm (where we have f), and we will get an approximate
sample from p(◊ | y).
The Markov chain ◊1, ◊2, . . . is this sample.
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Metropolis algorithm for Bayesian inference

Define g(◊) = p(◊) p(y | ◊), the non-normalized posterior density.
Generate a Markov chain ◊1, ◊2, . . . as follows:

Choose some b > 0.
Start with ◊1, where g(◊1) > 0.
For each i > 1:

Generate Â ≥ N(◊i, b2).
Let

r = min
⇢

1,
g(Â)
g(◊i)

�
.

Set

◊i+1 =
(

Â with probability r

◊i with probability 1 ≠ r
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Working on the log scale

We usually do the computations using the log of the posterior
density.
The likelihood is typically a product of many terms.

p(y | ◊) =
nY

i=1
p(yi | ◊)

Due to finite accuracy of computers, if we multiply these together
for a large dataset, the result is inaccurate.
So calculate

log (p(y | ◊)) =
nX

i=1
log (p(yi | ◊))
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Using the log scale

Define L(◊) = log (p(◊) p(y | ◊)) = log (p(◊)) + log (p(y | ◊)),
the log of the posterior density (up to a constant).
To work on the log scale, the part of the algorithm with the
acceptance probability changes.
Define

” = min (0, L(Â) ≠ L(◊i≠1))

Generate u ≥ Uniform(0, 1)
Set

◊i =
(

Â if log(u) Æ ”

◊i≠1 otherwise
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Normal example with known variance

Y1, . . . , Yn iid from N(◊, ‡2) where ‡2 is known.
◊ ≥ N(µ, · 2) with · 2 known,
Apply the Metropolis-Hastings algorithm to simulate from the
posterior p(◊|y1, . . . , yn) after observing Y = y
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Metropolis-Hastings algorithm for Bayesian inference

Metropolis-Hastings algorithm generates a dependent sequence
◊(1), . . . , of ◊ values.

Under mild conditions, the empirical distribution of ◊(i), i = 1, 2, . . .
will approximate well the posterior.

We can view ◊(i), i = 1, 2, . . . as a sample from the posterior p(◊|y).

Hence, we can approximate posterior means, quantiles and other
posterior quantities of interest using {◊(1), . . . , ◊(N)} for large N .

However, our approximation to these quantities will depend on how
well our simulated sequence actually approximates p(◊ | y).
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