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-y's agenda

Today's lecture
@ Review
@ Understand Markov Chain

@ Understand Metropolis-Hastings

@ Apply Metropolis-Hastings in Bayesian inference to generate samples
from the posterior pdf.
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Review: Monte Carlo integration

@ The Monte Carlo integration refers to the theory and practice of
approximating integrals using random samples.

@ Monte Carlo integration methods are sometimes referred to as
stochastic integration methods because they are based on random
sampling.
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Example

@ Suppose that we wish to compute the following integral

[ sin(z(1 - x))
I_/O 1+x+\/5d:v.

@ There does not appear to be any closed-form solution, so we can
approximate the integral using Monte Carlo methods.
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Example

o Plot of the function h(x) = Si?fx(i?/—?), z € 10,1],

@ Using a deterministic numerical integration method in R based on
adaptive quadrature of functions, I = 0.079.

>h=function(x) sin(x*(1-x))/(1+x+sqrt(x))
>integrate(h,lower=0,upper=1)
>0.07852747 with absolute error < 9.2e-06
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Example

@ Goal: Compute the integral I using Monte Carlo integration

@ The integral, I, can be written as the expectation of h(X), where
X ~U|0,1] and

h(z) = S2El=2) o e 10, 1].

1+z++/x
@ Because,
\f\)
where f(x) =1,z € [0,1] is the U|0, 1] den5|ty
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@ Thus, we can generate |ID observations X, ..., Xy from U]|0, 1],
and estimate I by VT
v\/\ﬁ

N 1 sin(X,(1 - X))
[ = — h(X,) = — : =~
N; (X:) N; 1+ X, + VX,
o I is the Monte Carlo integration estlmzigr,af\I E(h(X)),
X ~U|0,1].
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.

@ Then, the weak law of large numbers (WLLN) says

L] =
I:NI, N = o0,

@ As we use more samples N, I should get more and more accurate.
~_ A

~—

N\

L~ (hw”)?
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B 20000

@ InR
\

— h=function(x) sin(x*(1-x))/(1+x+sqrt(x)) —?/&/ﬂ’@ﬁ h /?C}
A > x= run1f(1000)

1 emean(h(x)) N (l'\ (X»))% - f]'l’\ /)(U])

o [ =0.081, and it is the Monte Carlo estimate of the integral L‘:E/I/)/)@

el —_—
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Bayesian inference

@ Quite often a quantity of interest in statistics may be expressed as
an integral that we wish to evaluate.

@ For instance, in Bayesian analysis, one is often interested in the

~ posterior mean of a particular continuous parameter 0

2 porticuar continvous parameter§ - pfyef|
by = [ 090190 —)’E(HO@HJ

/—N

U

@ or in the posterior mean of transformed parameters 1) = g(6)

ﬁ b = [ 9©)p0 | v) o, :/E/ﬁ/@)fg

@ or in the posterior probability,

P(@s@:/c pwwy)de:/mf(e &) p(6 | y)d = E(I(6 <
— WW\’
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Board example: Poisson data/Gamma prior

@ Suppose we observe iid data y,,...,y, from Poisson(\).

@ Let A\ have the gamma(a, ) prior distribution, the conjugate prior
distribution for the Poisson likelihood.

@ What is the posterior density, p(A | y) of A?
How would you estimate the posterior probability P(A < ¢) by

Monte Carlo integration, for some ¢ > 07

\/_\/\'
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Board question: Binomial data/flat prior

o Let k ~ binom(n, q).

Q Assume flat prior on q. Z‘VU [Olll

Q Let n = 860 and k£ = 441
J—— C————
@ R code below

a=1
b=1
n=860
k=441
N=10000
—=(eta.post. sampl}yrbeta(N , shapel=a+k, shape%=b+n—k)
—> gamma.sample=1log( (le\e{Ll—beta .post.sample)))

mean (gamma . sample)
c(quantile(gamma.sample,0.025) ,quantile(gamma.sample,0.975))
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Board question: Binomial data/flat prior

@ When this code has run, what will beta post.sample contain?

What will gamma . sample contain?

— )

o Describe the estimator 6 for a quantity 6 (which you should also
determine) that would be obtained by the following R commands

v
mean (gamma . sample)
L S~———

g gamma . sample=log((beta.post.sample/(1-beta.post.sample)))

@ In statistical terms, what quantity will the last line of code output?

@ See also, Question 3, final exam Jan 2023
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Markov Chain Monte Carlo (MCMC)

@ Monte Carlo integration estimates E;[h(X)] bsampling iid

samples from the pdf f or from the posterior pdf in Bayesian
inference

L ~ .
— IZN.Z“X”’_-

\_/\/'\_:

@ Question: But what if we cannot sample directly from f?

- f is not analytically tractable.
- Then, simple Monte Carlo integration cannot be used.

a—
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MCMC can help when f is intractable

@ Markov Chain Monte Carlo (MCMC) is a set of methods that can

generate a sample with pdf f without having to sample from f
directly. = .

@ Thus, MCMC can be used to generate samples from complicated
probability distributions. o

@ At the price, however, of yielding dependent observations that are

“approximately from . ‘
PP y fi
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Markov Chain Monte Carlo (MCMC)

Soal: £ 1S dend) cowpl Fekea
w#(m%%u g?na% @ sample bom 4

@ The general idea of Markov Chain Monte Carlo (MCMC) methods

is to construct a sequence of RV X,, X, ..., calle arkov chain;
T ——
which (hopefully) converges to the dlstrlbutlon of interest

— D ——— e

Q Howeverf X, X,... ) is NOT independent any more.

@ But it can still be used to estimate quantities (e.g, mean) because
there is a WLLN for Markov chains.

@ Under certain conditions,
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Markov chains

What is a Markov Chain?

o Definition (Markov Chain). A Markov chain is a sequence
X1, X9, ... of random variables such that the probability distribution
of X; (pmf or pdf) only depends on the prewous value X;_1

p(Xi | X1, Xos o X0 Xo1) = p(X, ‘Pmc’rf

@ The process depends on the past only through the present.
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-: RO walk

@ As an example of a Markov chain, suppose X; =1, and ffr 1> 1)
e ———

P(X; = X; 1 +1) =17 =1
P(X;=X;_1—1) j(’ 7%
— W

@ This is a random walk starting at X, = 1.

p———)

@ It can go off towards —oo or oo without limit.
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-Ie: RO walk

@ So you flip a coin move +1 steps if heads, move -1 steps if tails.
e -

@ At step ¢ of this Markov chain, X,;_q is either increased or decreased
by 1. -

1
@ Each possibility happens with probability —.

2
N NN NN
L s e
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>

7/9 7(3 7[& %
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Metropolis-Hastings algorithm

@ The Metropolis-Hastings algorithm is a type of Markov chain Monte
Carlo (MCMC) that works as follows.

o Let ¢(y|z) be a conditional density that we know how to sample
from.

@ q(y|x) is called the proposal distribution.

@ The Metropolis-Hastings algorithm creates a Markov Chain
(dependent observations) X7, X5,... as follows.
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Metropolis-Hastings algorithm

Choose X, arbitrarily. Suppose we have generated X,,..., X,. To
generate X, do the following:

@ Generate a proposal or candidate random value Y ~ ¢q(y|X,).
@ Evaluate r = r(X,,Y) where

~min fy) a(zly)
rla,y) = min {5 T

@ Generate U ~ U(0,1). If U <r, set X,,; =Y, otherwise set
X, =X,
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Metropolis algorithm terminology

@ q is the proposal distribution: we propose new rv Y using the
conditional distribution ¢(- | X;) that depends on X, (not on the

past).

@ MH accepts Y with probability
r=r(X,,Y)=min { }f((;é)) Zg%g; : 1}, called the acceptance
probability.
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Metropolis algorithm terminology

@ f is sometimes called the target distribution: this is what we are
aiming for, i.e. we want to generate a sample with pdf f.

o In Bayesian inference, f would be the posterior distribution p(6 | y),
and we want a sample of 6 values from this posterior distribution.
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Choosing events in computer code

Remarks:

@ In general, to implement a random event that happens with
probability 7:
o Generate u ~ Uniform(0, 1);

o Event happens if u <.

o If U is a random variable, with U ~ Uniform(0, 1), then U has cdf
F(r)y=r,so P(U <r)=r.
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Metropolis-Hastings algorithm

Remarks:

@ A common choice for q(y|x) is N(z,b*) for some b > 0.

@ This means that the proposal Y is a drawn from normal centered at
the current value.

o By symmetry, q(y|x) = q(z|y)

r(x,y) = min {%, 1}.
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Metropolis-Hastings algorithm

Remarks:
@ In the algorithm, f only appears in acceptance probability
| f(Y) }
r(X,;,Y)=min<q 1, :
( ) { f(X3)

@ The acceptance probability does not depend on the
normalisation constant, i.e. if f(z) = cg(x), where ¢ > 0 doesn’t
depend on x, then

r(X,,Y) = min {1’ 5(%:)) } |

@ So we only need to know f up to a normalisation constant. Useful
for Bayesian inference!
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Output of the Metropolis-Hastings algorithm

@ The Metropolis-Hastings algorithm generates a dependent sequence
of observations X7, Xo,....

@ Since our procedure for generating X, ., depends only on X, the

conditional distribution of X, ; given X,,..., X, depends only on
X,.
@ Hence, the sequence X7, X5, ... is a Markov chain.
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Output of the Metropolis-Hastings algorithm

@ The chain X1, X5,... has the property that:
if X,;,_1 ~ f, then X; ~ f

@ f is the equilibrium distribution or stationary of the chain.

@ However, we don't start with X; ~ f (because if we could, we
wouldn’t need this algorithm).

o But for large enough i, if some technical conditions are met, then
each X; ~ f approximately.
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Output of the Metropolis-Hastings algorithm

@ In practice, we only generate X7, Xo,..., Xy for some large V.

@ Under some conditions, the empirical distribution of X1, X5, ..., X4
approximates f well if IV is large.

@ Hence, we can approximate the integral I = [ h(z) f(z) dx using the
approximated X1, Xo,..., X, that is

1 N
© Y MK, X1, Xa,.., Xy ~ [ (approximately),

and X1, Xo,..., Xy generated by MH.
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Example: Metropolis-Hastings algorithm

@ The Cauchy distribution has density

1
f(CU) o 7_‘_(1 —|-.CIZ’2)
@ Our goal is to simulate a Markov chain whose stationary distribution
is f.

o Take ¢(y|x) to be N(x,b*) for some b > 0.
@ Then,

1 2

r(x,y) = min{ A ,1}.
1+ y2

o Let r =7r(X,,Y). Generate U ~U(0,1). f U <r, set X,,, =Y,
otherwise set X,,, = X,.
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Example: Metropolis-Hastings algorithm

o Figure below shows the chains of length N = 1000 using b =1
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Example: Metropolis-Hastings algorithm

o Figure: Histogram of chains and the plot of the Cauchy density (red)
@ The distribution of chain converges to the desired Cauchy

distribution.
empirical distribution of the chain
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Relevance to Bayesian inference

o Let f be the posterior pdf, p(6 | y): this is the distribution we want
to sample from.

o Let ¢(2|0;) be a pdf for the proposal ¥ which is symmetric in ¢ and
0, e.g., normal N(6,,b*).

@ The algorithm constructs a Markov chain 61,605, ..., where the 6,
are continuous rvs (in our applications).
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Relevance to Bayesian inference

@ ¢ is called the proposal distribution: it is used to generate the next
possible point in the Markov chain.

@ q is often taken as a normal distribution centred on the current point
p; ~ N(0;,b%), for some b > 0.

@ The normal pdf is symmetric in 6 and ), as required by the
algorithm

L w-0? (8-
e W = W =q0]u)

q(¢ | 0) =

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Relevance to Bayesian inference

The algorithm constructs a Markov chain 64,65, ... as follows:
@ Start with arbitrary 6.
@ For each ¢ > 1, generate 1; from distribution ¢(v | 6;).

o Let
r — min {1» i(% |\ Z)) }

o Set
v with probability r
Oiv1 = . .
0; with probability 1 —r
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Relevance to Bayesian inference

@ In Bayesian inference, the posterior density is

p(0 | y) o< p(6) p(y | 0)

o It's difficult to find the normalizing constant

/ p(8) ply | 6) do

@ We don't need to find this, we just put g(6) = p(0) p(y | 8), use g in
the algorithm (where we have f), and we will get an approximate
sample from p(6 | y).

@ The Markov chain 61,605, ... is this sample.
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Metropolis algorithm for Bayesian inference

Define g(0) = p(@) p(y | #), the non-normalized posterior density.
Generate a Markov chain 61,605, ... as follows:

@ Choose some b > 0.

o Start with 61, where g(6;) > 0.

@ For each 7 > 1:
o Generate ¥ ~ N(0;,b°).

o Let
r = min {1, g((;i)) } .

o Set
1 with probability r
Oit1 = . N
0; with probability 1 —r
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Working on the log scale

@ We usually do the computations using the log of the posterior
density.

@ The likelihood is typically a product of many terms.

n

p(y | 0) =]]pil0)

1=1

@ Due to finite accuracy of computers, if we multiply these together
for a large dataset, the result is inaccurate.

o So calculate

log (p(y | 0)) = Zlog (p(yi | 6))
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Using the log scale

o Define L(0) = log (p(0) p(y | 0)) = log (p(0)) + log (p(y | 0)),
the log of the posterior density (up to a constant).

@ To work on the log scale, the part of the algorithm with the
acceptance probability changes.

@ Define
0 = min (0, L(¢) — L(b;-1))
o Generate u ~ Uniform(0, 1)

o Set
0. — {¢ if log(u) <9

0,_1 otherwise
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Normal example with known variance

o Y,,...,Y, iid from N(0,0°%) where ¢* is known.
@ 0 ~ N(u,7%) with 7% known,

@ Apply the Metropolis-Hastings algorithm to simulate from the
posterior p(0|y,,...,y,) after observing Y =y
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Metropolis-Hastings algorithm for Bayesian inference

@ Metropolis-Hastings algorithm generates a dependent sequence
oW, ..., of 6 values.

@ Under mild conditions, the empirical distribution of 8, 1 =1,2,...
will approximate well the posterior.

@ We can view 0%, ¢ =1,2,... as a sample from the posterior p(0|y).

@ Hence, we can approximate posterior means, quantiles and other
posterior quantities of interest using {0, ..., 0™} for large N.

@ However, our approximation to these quantities will depend on how
well our simulated sequence actually approximates p(6 | y).

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



