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-enda

Today's lecture

@ Understand Metropolis-Hastings

@ Apply Metropolis-Hastings in Bayesian inference to generate samples
from the posterior pdf.
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Markov Chain Monte Carlo (MCMC)

@ Recall, Monte Carlo integration approximates integrals of various
functions h(x)

1= / h(x)f (@) de = By [h(X)], X ~ f

by directly sampling iid samples from the pdf f or from the posterior
pdf in Bayesian inference.

o Let X,,..., X, iid~ f, the Monte Carlo estimator of I is given by

O [
I = N;h(Xi).
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Markov Chain Monte Carlo (MCMC)

@ Question: But what if we cannot sample directly from f?

- f is not analytically tractable.
- Then, simple Monte Carlo integration cannot be used.

@ In Bayesian inference, if we use a non-conjugate prior, then the
posterior distribution may not be a well-known distribution.
- our prior beliefs may not be captured using a conjugate prior
- conjugate prior is unavailable for complicated problems
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Motivating example

o Let x = (z,...,2,) IID from N(u,o?), with u known and o2
unknown.

@ We showed that a gamma(a, 3) prior for 7 = 1/0? is conjugate.

o But what if a gamma(a, 3) does not adequately represent our prior
beliefs?
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Motivating example

@ Instead, we assume that our prior beliefs are represented by the
lognormal(6, v*) distribution with pdf

1

TUN 27

(log T — 6)?

e }, T > 0,

p(T) = exp { —

where 6 and v? are known.

@ What is the posterior density of 7 under the lognormal prior and
normal likelihood? What is the posterior mean of 77
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MCMC can help when f is not analytically tractable

@ Markov Chain Monte Carlo (MCMC) is a set of methods that can
generate a sample with pdf f without having to sample from f
directly.

@ Thus, MCMC can be used to generate samples from complicated
probability distributions.

@ At the price, however, of yielding dependent observations that are
approximately from f.
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Markov Chain Monte Carlo (MCMC)

@ The general idea of MCMC methods is to construct a sequence of
RV X,, X, ..., called Markov chain, which (hopefully) converges to
the distribution of interest f.

@ However, X,, X, ..., is NOT independent any more.

@ But it can still be used to estimate means, F,|h(X)]|, because there
is a WLLN for Markov chains.

@ Under certain conditions,

L1 & P
I=— Z_;h(Xi) = E,[MX)] =1, asN — .
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Markov chains

What is a Markov Chain?

o Definition (Markov Chain). A Markov chain is a sequence
X1, Xo,... of random variables such that the probability distribution
of X; (pmf or pdf) only depends on the previous value X;

p(X; | X1, Xo, ... Xio, Xio1) = p(X; | Xizq).

@ The process depends on the past only through the present.
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Example: Random walk

@ As an example of a Markov chain is the random walk starting at
X, =1.

@ Suppose X; =1, and for ¢ > 1

P(Xi=X,_14+1)=1/2,
P(Xi=X,1—1)=1/2.

@ So you flip a coin move +1 steps if heads, move -1 steps if tails.

@ At step ¢ of this Markov chain, X,;_q is either increased or decreased

1
by 1 with probability 5"
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Metropolis-Hastings algorithm

@ The Metropolis-Hastings algorithm is a type of MCMC that works as
follows.

o Let ¢(y|z) be a conditional density that we know how to sample
from.

@ q(y|x) is called the proposal distribution.

@ The Metropolis-Hastings algorithm creates a Markov Chain
(dependent observations) X7, X5,... as follows.
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Metropolis-Hastings algorithm

Gonl: Cenoule W— bum £ (fagek dstlbutn

Choose X, arbitrarily. Suppose we have generated Xl, L, X,. To
generate X, do the following:

@ Generate a proposal or candidate random valu Y ~ q(y|X;): [08
@ Evaluate r = r(X Y) where \r"‘\i’w”é

o) =min{ 7 f<a:> q<yrx>’

@ Generate U ~ U(0, 1) If U <r, set X,,, =Y, otherwise set

&o5 T
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Metropolis algorithm terminology

@ ¢ is the proposal distribution: we propose new rv Y using the
conditional distribution ¢(- | X;) that depends on X, (not on the
past).

@ MH accepts Y with probability

) ) X,
r=r(X;,Y)=min { f(X5) q(Y

called the acceptance probability.
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Metropolis algorithm terminology

@ f is sometimes called the target distribution: this is what we are
aiming for, i.e. we want to generate a sample with pdf f.

o In Bayesian inference, f would be the posterior distribution p(6 | y),
and we want a sample of 6 values from this posterior distribution.
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Choosing events in computer code

Remarks:

@ In general, to implement a random event that happens with
probability 7:
o Generate u ~ Uniform(0, 1);

o Event happens if u <.

o If U is a random variable, with U ~ Uniform(0, 1), then U has cdf
F(r)y=r,so P(U <r)=r.
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Metropolis-Hastings algorithm

Remarks:

@ A common choice for q(y|x) is N(z,b*) for some b > 0.

@ This means that the proposal Y is a drawn from normal centered at
the current value.

o By symmetry, q(y|x) = q(z|y)

r(x,y) = min {%, 1}.
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Metropolis-Hastings algorithm

Remarks:
@ In the algorithm, f only appears in acceptance probability
| f(Y) }
r(X,;,Y)=min<q 1, :
( ) { f(X3)

@ The acceptance probability does not depend on the
normalisation constant, i.e. if f(z) = cg(x), where ¢ > 0 doesn’t
depend on x, then

r(X,,Y) = min {1’ 5(%:)) } |

@ So we only need to know f up to a normalisation constant. Useful
for Bayesian inference!
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Output of the Metropolis-Hastings algorithm

@ The Metropolis-Hastings algorithm generates a dependent sequence
of observations X7, Xo,.... e %(\IIK"\
— YN —

@ Since our procedure for generating X, ., depends only on X, the
- ——— =
conditional distribution of X, ; given X,,..., X, depends only on
\/W\/

X,.
wr

@ Hence, the sequence X7, X5, ... is a Markov chain.
‘\/ -
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Output of the Metropolis-Hastings algorithm

@ The chain X1, X5,... has the property that:
if X,;,_1 ~ f, then X; ~ f

—————y = "

@ f is the equilibrium distribution or stationary of the chain.

@ However, we don't start with X; ~ f (because if we could, we
. . . ———
wouldn’t need this algorithm).

o But for large enough_j;’,l if some technical conditions are met, then
each X; ~ f approximately.

\Jm& > 0 &ppw)}\mdﬂi sovnple

Yo
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Output of the Metropolis-Hastings algorithm

@ In practice, we only generate X7, Xo,..., Xy for some large V.
-—

@ Under some conditions, the empirical distribution of X1, X5, ..., X4
V\,v

approximates f well if IV is large.
7 _EglniR)

@ Hence, we can approximate the integral I = [ h(z) f(z) dx using the
approximated X1, Xo,..., Xy, thatis Y

N1 .
I: Nzh(Xi)’ X1,Xs,..., Xy ~ f(approximately),

. VN AN
W
and X1, Xo,..., Xy generated by MH.
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Example: Metropolis-Hastings algorithm

@ The Cauchy distribution has density

Fla) = —— Loget distn bukion

(14 22)
@ Our goal is to simulate a Markov chain whose stationary distribution
is f.
o Take ¢(y|x) to be N(x,b*) for some b > 0.
@ Then,
1 2
r(x,y) = min{ A ,1}.
1+ y2

o Let r =r(X,,Y). Generate U ~U(0,1). f U <r, set X,,, =Y,
otherwise set X,,, = X,.
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Example: Metropolis-Hastings algorithm

o Figure below shows the chains of length N = 1000 using b =1
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Example: Metropolis-Hastings algorithm

o Figure: Histogram of chains and the plot of the Cauchy density (red)
@ The distribution of chain converges to the desired Cauchy

distribution.
empirical distribution of the chain
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Relevance to Bayesian inference

o Let f be the posterior pdf, p(6 | y): this is the distribution we want

~——

to sample from.

Q Letgq(w 9i)>oe a pdf for the proposal ¢ whjch is symmetric in 1) and
0, e.g., normal N(6,,b%). \PN N (8(,, ba
P

@ The algorithm constructs a Markov chain 61,605, ..., where the 6,
are continuous rvs (in our applications).
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Relevance to Bayesian inference

@ ¢ is called the proposal distribution: it is used to generate the next
possible point in the Markov chain.

@ ¢ is often taken as a normal distribution centred on the current point

; ~ N(0;,b%), for some b > 0.

S ¥
@ The normal pdf is symmetric in 6 and ), as required by the
algorithm Y
Ut N et
9 = e 2b2 — e 2b2 — 9 .
S0 = Ve Varb Y
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-ance to Bayesian inference

Goul- Cenende 0 pstensy somple. 004, gg,jq@%)

The algorithm constructs a Markov chain 64,65, ... as follows:
. . N (s Holloukion
@ Start with arbitrary 6.

For each 7 > 1, generate@from distribution q(v | 6;).— Z(BC["{))
e e . A
W T T:min{l 6'3 N[Bblb )

@ Set

9. with probability r
i_ 6; with probability 1 — r

«
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Relevance to Bayesian inference

@ In Bayesian inference, the posterior density is

p(0 | y) o< p(8) p(y | 0)

1 —m————

o It's difficult to find the normalizing constant

/ p(8) ply | 6) do

\/\/W

@ We don't need to find this, we just put g(6) = p(0) p(y | 8), use g in
the algorithm (where we have f), and we will get an approximate

sample from p(6 | y). )S
@ The Markov chain 61,605, ... is this sample.
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Metropolis algorithm for Bayesian inference

Define g(0) ﬁ@@the non-normalized posterior density.

Generate a Markov chain 61,605, ... as follows:

@ Choose some b > 0.

Ly

o W, where g(61) > 0.

@ For each 7 > 1:

o Generate ¥ ~ N(0;,b°).
o Let -

o Set

b = {w with probabily. s

— 0; with probability 1 —r
—————— 7
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Working on the log scale

@ We usually do the computations using the log of the posterior
density.

@ The likelihood is typically a product of many terms.

@ Due to finite accuracy of computers, if we multiply these together
for a large dataset, the result is inaccurate.

o So calculate

log (p(y | 6)) = Y log (p(y: | 0))

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Using the log scale

o Define L£(0) = log (p(0) p(y | 0)) = log +Lk__9 ),

the log of the posterior*density (up to a cor constant

@ To work on the log scale, the part of the algorithm with the
acceptance probability changes.

5:\mi/11_(&%£(9i—1))

o Generate u ~ Uniform(0, 1)

o Set

@ Define

9__{¢ if log(u) <9

0,_1 otherwise
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Normal example with known variance

o Y,,...,Y, iid from N(0,0°%) where ¢* is known.
@ 0 ~ N(u,7%) with 7% known,

@ Apply the Metropolis-Hastings algorithm to simulate from the
posterior p(0|y,,...,y,) after observing Y =y
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Metropolis-Hastings algorithm for Bayesian inference

@ Metropolis-Hastings algorithm generates a dependent sequence
oW, ..., of 6 values.

@ Under mild conditions, the empirical distribution of 8, 1 =1,2,...
will approximate well the posterior.

@ We can view 0%, ¢ =1,2,... as a sample from the posterior p(0|y).

@ Hence, we can approximate posterior means, quantiles and other
posterior quantities of interest using {0, ..., 0™} for large N.

@ However, our approximation to these quantities will depend on how
well our simulated sequence actually approximates p(6 | y).
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