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Today’s agenda

Today’s lecture

Understand Metropolis-Hastings

Apply Metropolis-Hastings in Bayesian inference to generate samples
from the posterior pdf.
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Markov Chain Monte Carlo (MCMC)

Recall, Monte Carlo integration approximates integrals of various
functions h(x)

I =
Z

h(x)f(x) dx = Ef [h(X)], X ≥ f

by directly sampling iid samples from the pdf f or from the posterior
pdf in Bayesian inference.

Let X1, . . . , Xn iid ≥ f , the Monte Carlo estimator of I is given by

Î = 1
N

NX

i=1

h(Xi).
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Markov Chain Monte Carlo (MCMC)

Question: But what if we cannot sample directly from f?
- f is not analytically tractable.
- Then, simple Monte Carlo integration cannot be used.

In Bayesian inference, if we use a non-conjugate prior, then the
posterior distribution may not be a well-known distribution.
- our prior beliefs may not be captured using a conjugate prior
- conjugate prior is unavailable for complicated problems

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Motivating example

Let x = (x1, . . . , xn) IID from N(µ, ‡2), with µ known and ‡2

unknown.

We showed that a gamma(–, —) prior for · = 1/‡2 is conjugate.

But what if a gamma(–, —) does not adequately represent our prior
beliefs?
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Motivating example

Instead, we assume that our prior beliefs are represented by the
lognormal(◊, v2) distribution with pdf

p(·) = 1
·v

Ô
2fi

exp
�

≠ (log · ≠ ◊)2

2v2

 
, · > 0,

where ◊ and v2 are known.

What is the posterior density of · under the lognormal prior and
normal likelihood? What is the posterior mean of ·?

E. Solea, QMUL MTH6102: Bayesian Statistical Methods







MCMC can help when f is not analytically tractable

Markov Chain Monte Carlo (MCMC) is a set of methods that can
generate a sample with pdf f without having to sample from f
directly.

Thus, MCMC can be used to generate samples from complicated
probability distributions.

At the price, however, of yielding dependent observations that are
approximately from f .
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Markov Chain Monte Carlo (MCMC)

The general idea of MCMC methods is to construct a sequence of
RV X1, X2 . . . ,, called Markov chain, which (hopefully) converges to
the distribution of interest f .

However, X1, X2 . . . , is NOT independent any more.

But it can still be used to estimate means, Ef [h(X)], because there
is a WLLN for Markov chains.

Under certain conditions,

Î = 1
N

NX

i=1

h(Xi) P≠æ Ef [h(X)] = I, as N æ Œ.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Markov chains

What is a Markov Chain?

Definition (Markov Chain). A Markov chain is a sequence
X1, X2, . . . of random variables such that the probability distribution
of Xi (pmf or pdf) only depends on the previous value Xi≠1

p(Xi | X1, X2, . . . Xi≠2, Xi≠1) = p(Xi | Xi≠1).

The process depends on the past only through the present.
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Example: Random walk

As an example of a Markov chain is the random walk starting at
X1 = 1.
Suppose X1 = 1, and for i > 1

P (Xi = Xi≠1 + 1) = 1/2,

P (Xi = Xi≠1 ≠ 1) = 1/2.

So you flip a coin move +1 steps if heads, move -1 steps if tails.

At step i of this Markov chain, Xi≠1 is either increased or decreased
by 1 with probability 1

2 .
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Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a type of MCMC that works as
follows.

Let q(y|x) be a conditional density that we know how to sample
from.

q(y|x) is called the proposal distribution.

The Metropolis-Hastings algorithm creates a Markov Chain
(dependent observations) X1, X2, . . . as follows.
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Metropolis-Hastings algorithm

Choose X1 arbitrarily. Suppose we have generated X1, . . . , Xi. To
generate Xi+1 do the following:

1 Generate a proposal or candidate random value Y ≥ q(y|Xi).
2 Evaluate r © r(Xi, Y ) where

r(x, y) = min
nf(y)

f(x)
q(x|y)
q(y|x) , 1

o
.

3 Generate U ≥ U(0, 1). If U < r, set Xi+1 = Y , otherwise set
Xi+1 = Xi.
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Metropolis algorithm terminology

q is the proposal distribution: we propose new rv Y using the
conditional distribution q(· | Xi) that depends on Xi (not on the
past).

MH accepts Y with probability

r © r(Xi, Y ) = min
n f(Y )

f(Xi)
q(Xi|Y )
q(Y |Xi)

, 1
o

,

called the acceptance probability.
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Metropolis algorithm terminology

f is sometimes called the target distribution: this is what we are
aiming for, i.e. we want to generate a sample with pdf f .

In Bayesian inference, f would be the posterior distribution p(◊ | y),
and we want a sample of ◊ values from this posterior distribution.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Choosing events in computer code

Remarks:
In general, to implement a random event that happens with
probability r:
Generate u ≥ Uniform(0, 1);
Event happens if u Æ r.
If U is a random variable, with U ≥ Uniform(0, 1), then U has cdf
F (r) = r, so P (U Æ r) = r.
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Metropolis-Hastings algorithm

Remarks:

A common choice for q(y|x) is N(x, b2) for some b > 0.

This means that the proposal Y is a drawn from normal centered at
the current value.

By symmetry, q(y|x) = q(x|y)

r(x, y) = min
nf(y)

f(x) , 1
o

.
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Metropolis-Hastings algorithm

Remarks:
In the algorithm, f only appears in acceptance probability

r(Xi, Y ) = min
⇢

1,
f(Y )
f(Xi)

�
.

The acceptance probability does not depend on the
normalisation constant, i.e. if f(x) = cg(x), where c > 0 doesn’t
depend on x, then

r(Xi, Y ) = min
⇢

1,
g(Y )
g(Xi)

�
.

So we only need to know f up to a normalisation constant. Useful
for Bayesian inference!
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Output of the Metropolis-Hastings algorithm

1 The Metropolis-Hastings algorithm generates a dependent sequence
of observations X1, X2, . . . .

2 Since our procedure for generating Xi+1 depends only on Xi, the
conditional distribution of Xi+1 given X1, . . . , Xi depends only on
Xi.

3 Hence, the sequence X1, X2, . . . is a Markov chain.
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Output of the Metropolis-Hastings algorithm

The chain X1, X2, . . . has the property that:
if Xi≠1 ≥ f , then Xi ≥ f .

f is the equilibrium distribution or stationary of the chain.

However, we don’t start with X1 ≥ f (because if we could, we
wouldn’t need this algorithm).

But for large enough i, if some technical conditions are met, then
each Xi ≥ f approximately.
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Output of the Metropolis-Hastings algorithm

1 In practice, we only generate X1, X2, . . . , XN for some large N .

2 Under some conditions, the empirical distribution of X1, X2, . . . , XN

approximates f well if N is large.

3 Hence, we can approximate the integral I =
R

h(x)f(x) dx using the
approximated X1, X2, . . . , XN , that is

1
N

NX

i=1

h(Xi), X1, X2, . . . , XN ≥ f (approximately),

and X1, X2, . . . , XN generated by MH.
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Example: Metropolis-Hastings algorithm

The Cauchy distribution has density

f(x) = 1
fi(1 + x2)

Our goal is to simulate a Markov chain whose stationary distribution
is f .
Take q(y|x) to be N(x, b2) for some b > 0.
Then,

r(x, y) = min
n1 + x2

1 + y2
, 1
o

.

Let r = r(Xi, Y ). Generate U ≥ U(0, 1). If U < r, set Xi+1 = Y ,
otherwise set Xi+1 = Xi.
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Example: Metropolis-Hastings algorithm
Figure below shows the chains of length N = 1000 using b = 1
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Example: Metropolis-Hastings algorithm
Figure: Histogram of chains and the plot of the Cauchy density (red)
The distribution of chain converges to the desired Cauchy
distribution.

empirical distribution of the chain
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Relevance to Bayesian inference

Let f be the posterior pdf, p(◊ | y): this is the distribution we want
to sample from.

Let q(Â|◊i) be a pdf for the proposal Â which is symmetric in Â and
◊, e.g., normal N(◊i, b2).

The algorithm constructs a Markov chain ◊1, ◊2, . . . , where the ◊i

are continuous rvs (in our applications).
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Relevance to Bayesian inference

q is called the proposal distribution: it is used to generate the next
possible point in the Markov chain.
q is often taken as a normal distribution centred on the current point

Âi ≥ N(◊i, b2), for some b > 0.

The normal pdf is symmetric in ◊ and Â, as required by the
algorithm

q(Â | ◊) = 1Ô
2fib

e
≠

(Â ≠ ◊)2

2b2 = 1Ô
2fib

e
≠

(◊ ≠ Â)2

2b2 = q(◊ | Â).
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Relevance to Bayesian inference

The algorithm constructs a Markov chain ◊1, ◊2, . . . as follows:
Start with arbitrary ◊1.
For each i > 1, generate Âi from distribution q(Â | ◊i).
Let

r = min
⇢

1,
p(Â | y)
p(◊i | y)

�

Set

◊i+1 =
(

Â with probability r

◊i with probability 1 ≠ r
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Relevance to Bayesian inference

In Bayesian inference, the posterior density is

p(◊ | y) Ã p(◊) p(y | ◊)

It’s di�cult to find the normalizing constant
Z

p(◊) p(y | ◊) d◊

We don’t need to find this, we just put g(◊) = p(◊) p(y | ◊), use g in
the algorithm (where we have f), and we will get an approximate
sample from p(◊ | y).
The Markov chain ◊1, ◊2, . . . is this sample.
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Metropolis algorithm for Bayesian inference

Define g(◊) = p(◊) p(y | ◊), the non-normalized posterior density.
Generate a Markov chain ◊1, ◊2, . . . as follows:

Choose some b > 0.
Start with ◊1, where g(◊1) > 0.
For each i > 1:

Generate Â ≥ N(◊i, b2).
Let

r = min
⇢

1,
g(Â)
g(◊i)

�
.

Set

◊i+1 =
(

Â with probability r

◊i with probability 1 ≠ r
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Working on the log scale

We usually do the computations using the log of the posterior
density.
The likelihood is typically a product of many terms.

p(y | ◊) =
nY

i=1
p(yi | ◊)

Due to finite accuracy of computers, if we multiply these together
for a large dataset, the result is inaccurate.
So calculate

log (p(y | ◊)) =
nX

i=1
log (p(yi | ◊))
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Using the log scale

Define L(◊) = log (p(◊) p(y | ◊)) = log (p(◊)) + log (p(y | ◊)),
the log of the posterior density (up to a constant).
To work on the log scale, the part of the algorithm with the
acceptance probability changes.
Define

” = min (0, L(Â) ≠ L(◊i≠1))

Generate u ≥ Uniform(0, 1)
Set

◊i =
(

Â if log(u) < ”

◊i≠1 otherwise
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Normal example with known variance

Y1, . . . , Yn iid from N(◊, ‡2) where ‡2 is known.
◊ ≥ N(µ, · 2) with · 2 known,
Apply the Metropolis-Hastings algorithm to simulate from the
posterior p(◊|y1, . . . , yn) after observing Y = y
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Metropolis-Hastings algorithm for Bayesian inference

Metropolis-Hastings algorithm generates a dependent sequence
◊(1), . . . , of ◊ values.

Under mild conditions, the empirical distribution of ◊(i), i = 1, 2, . . .
will approximate well the posterior.

We can view ◊(i), i = 1, 2, . . . as a sample from the posterior p(◊|y).

Hence, we can approximate posterior means, quantiles and other
posterior quantities of interest using {◊(1), . . . , ◊(N)} for large N .

However, our approximation to these quantities will depend on how
well our simulated sequence actually approximates p(◊ | y).
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