## MTH6107 Chaos \& Fractals

Solutions 5

## EXAM QUESTION: the questions below correspond to the various parts of Question 3 on the January 2023 exam paper

For parameters $\lambda>0$, define $f_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{\lambda}(x)=\lambda x^{2}(1-x)
$$

Exercise 1. Show that there is a point $p \in \mathbb{R}$ which is a fixed point of $f_{\lambda}$ for all $\lambda>0$. Is $p$ attracting or repelling? Justify your answer.

Clearly $f_{\lambda}(0)=0$ for all $\lambda$, so $p=0$ is a fixed point. Now $f_{\lambda}^{\prime}(x)=\lambda\left(2 x-3 x^{2}\right)$, so $f_{\lambda}^{\prime}(0)=0$. In particular $\left|f_{\lambda}^{\prime}(0)\right|<1$, therefore 0 is an attracting fixed point.

Exercise 2. Determine the value $\lambda_{1}>0$ such that $f_{\lambda}$ has precisely one fixed point if $\lambda \in\left(0, \lambda_{1}\right)$, and precisely 3 fixed points if $\lambda>\lambda_{1}$. Justify your answer.

As noted in the solution to Exercise 1 above, the point $p=0$ is a fixed point of $f_{\lambda}$ for all $\lambda$. A point $x$ is fixed by $f_{\lambda}$ if and only if $\lambda x^{2}(1-x)=x$, and for $x \neq p=0$ this holds if and only if $\lambda x(1-x)=1$, if and only if

$$
\lambda x^{2}-\lambda x+1=0 .
$$

This quadratic equation has solutions

$$
x=\frac{1}{2 \lambda}\left(\lambda \pm \sqrt{\lambda^{2}-4 \lambda}\right)
$$

which are real and distinct fixed points of $f_{\lambda}$ if and only if $\lambda^{2}-4 \lambda>0$, and are non-real (hence not fixed points of $f_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}$ ) if and only if $\lambda^{2}-4 \lambda<0$. Setting $\lambda_{1}=4$ we see that $\lambda^{2}-4 \lambda<0$ if $\lambda \in\left(0, \lambda_{1}\right)$, and $\lambda^{2}-4 \lambda>0$ if $\lambda>\lambda_{1}$. It follows that $\lambda_{1}=4$ has the required properties.

Exercise 3. For $\lambda>\lambda_{1}$, let $x_{\lambda}^{-}<x_{\lambda}^{+}$denote the two fixed points of $f_{\lambda}$ which are not equal to $p$. Determine explicit formulae for $x_{\lambda}^{-}$and $x_{\lambda}^{+}$in terms of $\lambda$.

From the above we see that

$$
x_{\lambda}^{-}=\frac{1}{2 \lambda}\left(\lambda-\sqrt{\lambda^{2}-4 \lambda}\right), \quad x_{\lambda}^{+}=\frac{1}{2 \lambda}\left(\lambda+\sqrt{\lambda^{2}-4 \lambda}\right) .
$$

Exercise 4. Show that $x_{\lambda}^{-}$is a repelling fixed point of $f_{\lambda}$ for all $\lambda>\lambda_{1}$.
To prove that $x_{\lambda}^{-}$is repelling we will show that $f_{\lambda}^{\prime}\left(x_{\lambda}^{-}\right)>1$.
Now $f_{\lambda}^{\prime}(x)=2 \lambda x-3 \lambda x^{2}$, so

$$
f_{\lambda}^{\prime}\left(x_{\lambda}^{-}\right)=2 \lambda x_{\lambda}^{-}-3 \lambda\left(x_{\lambda}^{-}\right)^{2}=2 \lambda x_{\lambda}^{-}-3\left(\lambda x_{\lambda}-1\right)=3-\lambda x_{\lambda}^{-}
$$

(where we used that $x=x_{\lambda}^{-}$satisfies $\lambda x^{2}-\lambda x+1=0$ ).
It remains to show that $3-\lambda x_{\lambda}^{-}>1$, i.e. that

$$
3-\frac{1}{2}\left(\lambda-\sqrt{\lambda^{2}-4 \lambda}\right)>1 .
$$

For this, note that $\lambda>\lambda_{1}=4$, so $4 \lambda>16$, so $-4 \lambda>-8 \lambda+16$, so

$$
\lambda^{2}-4 \lambda>\lambda^{2}-8 \lambda+16=(\lambda-4)^{2}
$$

so $\sqrt{\lambda^{2}-4 \lambda}>\lambda-4$, so $4>\lambda-\sqrt{\lambda^{2}-4 \lambda}$, so $3-\frac{1}{2}\left(\lambda-\sqrt{\lambda^{2}-4 \lambda}\right)>1$, as required.
Exercise 5. Determine the value $\lambda_{2}>\lambda_{1}$ such that if $\lambda \in\left(\lambda_{1}, \lambda_{2}\right)$ then $x_{\lambda}^{+}$is an attracting fixed point of $f_{\lambda}$, and if $\lambda>\lambda_{2}$ then $x_{\lambda}^{+}$is a repelling fixed point of $f_{\lambda}$. Justify your answer.

By a calculation similar to the above we see that

$$
f_{\lambda}^{\prime}\left(x_{\lambda}^{+}\right)=3-\lambda x_{\lambda}^{+}=3-\frac{1}{2}\left(\lambda+\sqrt{\lambda^{2}-4 \lambda}\right)
$$

which is decreasing in $\lambda$. The value $\lambda_{2}$ is such that $f_{\lambda_{2}}^{\prime}\left(x_{\lambda_{2}}^{+}\right)=-1$, since then $\left|f_{\lambda}^{\prime}\left(x_{\lambda}^{+}\right)\right|<$ 1 for $\lambda \in\left(\lambda_{1}, \lambda_{2}\right)$ and $\left|f_{\lambda}^{\prime}\left(x_{\lambda}^{+}\right)\right|>1$ for $\lambda>\lambda_{2}$.

So $\lambda_{2}$ is the solution to the equation

$$
3-\frac{1}{2}\left(\lambda+\sqrt{\lambda^{2}-4 \lambda}\right)=-1 .
$$

That is, $8=\lambda+\sqrt{\lambda^{2}-4 \lambda}$, i.e. $(8-\lambda)^{2}=\lambda^{2}-4 \lambda$, i.e. $\lambda^{2}-16 \lambda+64=\lambda^{2}-4 \lambda$, i.e. $64=12 \lambda$, i.e. $\lambda=16 / 3$.

Therefore $\lambda_{2}=16 / 3$.
Exercise 6. Show that there exists $\lambda \in(5,6)$ such that $2 / 3$ is a point of least period 2 for $f_{\lambda}$.

Now $f_{\lambda}(2 / 3)=4 \lambda / 27$, and since $\lambda \in(5,6)$ then $\lambda \neq 9 / 2$, so $2 / 3$ is not a fixed point. So $2 / 3$ has least period 2 if and only if $g(\lambda):=f_{\lambda}^{2}(2 / 3)-2 / 3=0$. Now

$$
g(\lambda)=\lambda(4 \lambda / 27)^{2}(1-4 \lambda / 27)-\frac{2}{3}=\frac{16 \lambda^{3}(27-4 \lambda)}{27^{3}}-\frac{2}{3}
$$

is a continuous function of $\lambda$, with

$$
g(5)=\frac{16 \times 125 \times 7}{27^{3}}-\frac{2}{3}=\frac{14000}{19683}-\frac{2}{3}>0
$$

and

$$
g(6)=\frac{16 \times 216 \times 3}{27^{3}}-\frac{2}{3}=\frac{128}{243}-\frac{2}{3}<0,
$$

so by the Intermediate Value Theorem there exists $\lambda \in(5,6)$ such that $g(2 / 3)=0$. This value of $\lambda$ is such that $2 / 3$ is a point of least period 2 for $f_{\lambda}$.

