MTH6107 Chaos & Fractals

Solutions 5

EXAM QUESTION: the questions below correspond to the various parts of Question 3 on the January 2023 exam paper

For parameters $\lambda > 0$, define $f_{\lambda} : \mathbb{R} \to \mathbb{R}$ by

$$f_{\lambda}(x) = \lambda x^2 (1-x) \,.$$

Exercise 1. Show that there is a point $p \in \mathbb{R}$ which is a fixed point of f_{λ} for all $\lambda > 0$. Is p attracting or repelling? Justify your answer.

Clearly $f_{\lambda}(0) = 0$ for all λ , so p = 0 is a fixed point. Now $f'_{\lambda}(x) = \lambda(2x - 3x^2)$, so $f'_{\lambda}(0) = 0$. In particular $|f'_{\lambda}(0)| < 1$, therefore 0 is an attracting fixed point.

Exercise 2. Determine the value $\lambda_1 > 0$ such that f_{λ} has precisely one fixed point if $\lambda \in (0, \lambda_1)$, and precisely 3 fixed points if $\lambda > \lambda_1$. Justify your answer.

As noted in the solution to Exercise 1 above, the point p = 0 is a fixed point of f_{λ} for all λ . A point x is fixed by f_{λ} if and only if $\lambda x^2(1-x) = x$, and for $x \neq p = 0$ this holds if and only if $\lambda x(1-x) = 1$, if and only if

$$\lambda x^2 - \lambda x + 1 = 0.$$

This quadratic equation has solutions

$$x = \frac{1}{2\lambda} \left(\lambda \pm \sqrt{\lambda^2 - 4\lambda} \right)$$

which are real and distinct fixed points of f_{λ} if and only if $\lambda^2 - 4\lambda > 0$, and are non-real (hence not fixed points of $f_{\lambda} : \mathbb{R} \to \mathbb{R}$) if and only if $\lambda^2 - 4\lambda < 0$. Setting $\lambda_1 = 4$ we see that $\lambda^2 - 4\lambda < 0$ if $\lambda \in (0, \lambda_1)$, and $\lambda^2 - 4\lambda > 0$ if $\lambda > \lambda_1$. It follows that $\lambda_1 = 4$ has the required properties.

Exercise 3. For $\lambda > \lambda_1$, let $x_{\lambda}^- < x_{\lambda}^+$ denote the two fixed points of f_{λ} which are not equal to p. Determine explicit formulae for x_{λ}^- and x_{λ}^+ in terms of λ .

From the above we see that

$$x_{\lambda}^{-} = \frac{1}{2\lambda} \left(\lambda - \sqrt{\lambda^2 - 4\lambda} \right), \qquad x_{\lambda}^{+} = \frac{1}{2\lambda} \left(\lambda + \sqrt{\lambda^2 - 4\lambda} \right).$$

Exercise 4. Show that x_{λ}^{-} is a repelling fixed point of f_{λ} for all $\lambda > \lambda_{1}$.

To prove that x_λ^- is repelling we will show that $f_\lambda'(x_\lambda^-)>1.$ Now $f_\lambda'(x)=2\lambda x-3\lambda x^2$, so

$$f_{\lambda}'(x_{\lambda}^{-}) = 2\lambda x_{\lambda}^{-} - 3\lambda (x_{\lambda}^{-})^{2} = 2\lambda x_{\lambda}^{-} - 3(\lambda x_{\lambda} - 1) = 3 - \lambda x_{\lambda}^{-}$$

(where we used that $x = x_{\lambda}^{-}$ satisfies $\lambda x^{2} - \lambda x + 1 = 0$).

It remains to show that $3 - \lambda x_{\lambda}^{-} > 1$, i.e. that

$$3 - \frac{1}{2}(\lambda - \sqrt{\lambda^2 - 4\lambda}) > 1$$

For this, note that $\lambda > \lambda_1 = 4$, so $4\lambda > 16$, so $-4\lambda > -8\lambda + 16$, so

$$\lambda^2 - 4\lambda > \lambda^2 - 8\lambda + 16 = (\lambda - 4)^2,$$

so $\sqrt{\lambda^2 - 4\lambda} > \lambda - 4$, so $4 > \lambda - \sqrt{\lambda^2 - 4\lambda}$, so $3 - \frac{1}{2}(\lambda - \sqrt{\lambda^2 - 4\lambda}) > 1$, as required.

Exercise 5. Determine the value $\lambda_2 > \lambda_1$ such that if $\lambda \in (\lambda_1, \lambda_2)$ then x_{λ}^+ is an attracting fixed point of f_{λ} , and if $\lambda > \lambda_2$ then x_{λ}^+ is a repelling fixed point of f_{λ} . Justify your answer.

By a calculation similar to the above we see that

$$f_{\lambda}'(x_{\lambda}^{+}) = 3 - \lambda x_{\lambda}^{+} = 3 - \frac{1}{2}(\lambda + \sqrt{\lambda^{2} - 4\lambda}),$$

which is decreasing in λ . The value λ_2 is such that $f'_{\lambda_2}(x^+_{\lambda_2}) = -1$, since then $|f'_{\lambda}(x^+_{\lambda})| < 1$ for $\lambda \in (\lambda_1, \lambda_2)$ and $|f'_{\lambda}(x^+_{\lambda})| > 1$ for $\lambda > \lambda_2$.

So λ_2 is the solution to the equation

$$3 - \frac{1}{2}(\lambda + \sqrt{\lambda^2 - 4\lambda}) = -1$$

That is, $8 = \lambda + \sqrt{\lambda^2 - 4\lambda}$, i.e. $(8 - \lambda)^2 = \lambda^2 - 4\lambda$, i.e. $\lambda^2 - 16\lambda + 64 = \lambda^2 - 4\lambda$, i.e. $64 = 12\lambda$, i.e. $\lambda = 16/3$.

Therefore $\lambda_2 = 16/3$.

Exercise 6. Show that there exists $\lambda \in (5, 6)$ such that 2/3 is a point of least period 2 for f_{λ} .

Now $f_{\lambda}(2/3) = 4\lambda/27$, and since $\lambda \in (5,6)$ then $\lambda \neq 9/2$, so 2/3 is not a fixed point. So 2/3 has least period 2 if and only if $g(\lambda) := f_{\lambda}^2(2/3) - 2/3 = 0$. Now

$$g(\lambda) = \lambda (4\lambda/27)^2 (1 - 4\lambda/27) - \frac{2}{3} = \frac{16\lambda^3 (27 - 4\lambda)}{27^3} - \frac{2}{3}$$

is a continuous function of λ , with

$$g(5) = \frac{16 \times 125 \times 7}{27^3} - \frac{2}{3} = \frac{14000}{19683} - \frac{2}{3} > 0,$$

and

$$g(6) = \frac{16 \times 216 \times 3}{27^3} - \frac{2}{3} = \frac{128}{243} - \frac{2}{3} < 0$$

so by the Intermediate Value Theorem there exists $\lambda \in (5,6)$ such that g(2/3) = 0. This value of λ is such that 2/3 is a point of least period 2 for f_{λ} .