MTH6107 Chaos \& Fractals

Exercises 5

EXAM QUESTION: the questions below correspond to the various parts of Question 3 on the January 2023 exam paper

For parameters $\lambda>0$, define $f_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{\lambda}(x)=\lambda x^{2}(1-x) .
$$

Exercise 1. Show that there is a point $p \in \mathbb{R}$ which is a fixed point of f_{λ} for all $\lambda>0$. Is p attracting or repelling? Justify your answer.

Exercise 2. Determine the value $\lambda_{1}>0$ such that f_{λ} has precisely one fixed point if $\lambda \in\left(0, \lambda_{1}\right)$, and precisely 3 fixed points if $\lambda>\lambda_{1}$. Justify your answer.

Exercise 3. For $\lambda>\lambda_{1}$, let $x_{\lambda}^{-}<x_{\lambda}^{+}$denote the two fixed points of f_{λ} which are not equal to p. Determine explicit formulae for x_{λ}^{-}and x_{λ}^{+}in terms of λ.

Exercise 4. Show that x_{λ}^{-}is a repelling fixed point of f_{λ} for all $\lambda>\lambda_{1}$.
Exercise 5. Determine the value $\lambda_{2}>\lambda_{1}$ such that if $\lambda \in\left(\lambda_{1}, \lambda_{2}\right)$ then x_{λ}^{+}is an attracting fixed point of f_{λ}, and if $\lambda>\lambda_{2}$ then x_{λ}^{+}is a repelling fixed point of f_{λ}. Justify your answer.

Exercise 6. Show that there exists $\lambda \in(5,6)$ such that $2 / 3$ is a point of least period 2 for f_{λ}.

