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Suppose we would like to classify 

the data, splitting it in two 
categories


Which line does the best job?
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In this case H3 looks better than 
the other two


It is more separated from the data 
points. Farther with respect to the 
closest data point


Small perturbations of the data 
would not affect it as much
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General question: how do 
we ensure an ‘optimal’ 
hyperplane? 
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Intuition is to find a vector/plane 
that separates the two
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Intuition is to find a vector/plane 
that separates the two

But also, two support vectors/
planes that define the width of 
the separation
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Intuition is to find a vector/plane 
that separates the two

But also, two support vectors/
planes that define the width of 
the separation

This width should be 
as big as possible!
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Let us consider a vector  
perpendicular to the 
vectors/planes
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w

Let us consider a vector  
perpendicular to the 
vectors/planes

wu

And some unknown vector 
 that we can consider as 

an unknown (unlabelled) 
point
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w

Let us consider a vector  
perpendicular to the 
vectors/planes

wu

And some unknown vector 
 that we can consider as 

an unknown (unlabelled) 
point

u

We want to find out whether the point that defines the vector is on the left 
or right side of the central plane/vector (key for classification!)
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w

To find out, we can project

the vector  to the 
perpendicular and the 
length of the projection 
would tell us 
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How do we compute 
projections of vectors?
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⟨w, u⟩ = ∥w∥∥u∥ cos θ

How do we compute 
projections of vectors?
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⟨w, u⟩ = ∥w∥∥u∥ cos θ

How do we compute 
projections of vectors?

u

w

⟨w, u⟩
∥w∥

= ∥u∥ cos θ
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⟨w, u⟩ = ∥w∥∥u∥ cos θ

How do we compute 
projections of vectors?

u

w

⟨w, u⟩
∥w∥

= ∥u∥ cos θ
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So, we can say

⟨w, u⟩ ≥ r
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w

So, we can say

⟨w, u⟩ ≥ r

and if r is large enough so that 
the projection is past the 
central line we can classify the 
point u with the “stars”
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u

w

More in general we can say, if

⟨w, u⟩ + b ≥ 0
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More in general we can say, if

⟨w, u⟩ + b ≥ 0

Then the point u is a star- --
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u

w

More in general we can say, if

⟨w, u⟩ + b ≥ 0

Then the point u is a star

We need to find w and b! How

can we do that
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We need to set more conditions

⟨w, x+⟩ + b ≥ 1
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x+

w

We need to set more conditions

⟨w, x+⟩ + b ≥ 1
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Let us assume that the output (classification) variables are defined as

yi = 1 for + samples
yi = − 1 for - samples
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Let us assume that the output (classification) variables are defined as

yi = 1 for + samples
yi = − 1 for - samples

If we multiply the two conditions by ys we get the same expression
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Let us assume that the output (classification) variables are defined as

yi (⟨xi, w⟩ + b) ≥ 1

yi = 1 for + samples
yi = − 1 for - samples

If we multiply the two conditions by ys we get the same expression
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Let us assume that the output (classification) variables are defined as

yi (⟨xi, w⟩ + b) ≥ 1

yi = 1 for + samples
yi = − 1 for - samples

If we multiply the two conditions by ys we get the same expression

→ yi (⟨xi, w⟩ + b) − 1 ≥ 0
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Let us assume that the output (classification) variables are defined as

yi (⟨xi, w⟩ + b) ≥ 1

yi = 1 for + samples
yi = − 1 for - samples

If we multiply the two conditions by ys we get the same expression

→ yi (⟨xi, w⟩ + b) − 1 ≥ 0

And
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Let us assume that the output (classification) variables are defined as

yi (⟨xi, w⟩ + b) ≥ 1

yi = 1 for + samples
yi = − 1 for - samples

If we multiply the two conditions by ys we get the same expression

→ yi (⟨xi, w⟩ + b) − 1 ≥ 0

And

yi (⟨xi, w⟩ + b) − 1 = 0 for xi in the support vectors



Support vector machines

13

yi (⟨xi, w⟩ + b) − 1 = 0 for xi in the support vectors
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How can we measure the width?

x−

x+

⟨x+ − x−,
w

∥w∥
⟩

It is the projection of the difference

between the two vectors to w

x+ − x−

Since  is a unit vector

pointing in the direction of 

w∥w∥−1

w
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Let us remember that yi (⟨xi, w⟩ + b) − 1 = 0 for xi in the support vectors

yi (⟨xi, w⟩ + b) − 1 = 0  → ⟨x+, w⟩ = 1 − b
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Let us remember that

⟨x+ − x−,
w

∥w∥
⟩

yi (⟨xi, w⟩ + b) − 1 = 0 for xi in the support vectors

yi (⟨xi, w⟩ + b) − 1 = 0  → ⟨x+, w⟩ = 1 − b

yi (⟨xi, w⟩ + b) − 1 = 0  → − ⟨x−, w⟩ = 1 + b

→ ⟨x+,
w

∥w∥
⟩ − ⟨x−,

w
∥w∥

⟩ =
2

∥w∥

We want to maximize this quantity!
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⟨x+,
w

∥w∥
⟩ − ⟨x−,
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∥w∥

⟩ =
2

∥w∥

Maximize that ratio is equivalent to minimize the denominator! 
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⟨x+,
w

∥w∥
⟩ − ⟨x−,
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Maximize that ratio is equivalent to minimize the denominator! 

But, we can actually compute

arg min
w [ α
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⟨x+,
w

∥w∥
⟩ − ⟨x−,

w
∥w∥

⟩ =
2

∥w∥

Maximize that ratio is equivalent to minimize the denominator! 

But, we can actually compute

arg min
w [ α

2
∥w∥2]

Why the one half and the square?
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i = 1,…, sfor

However we have to account for some constraints

So, first step is to

arg min
w [ α

2
∥w∥2]

yi (⟨xi, w⟩ + b) − 1 ≥ 0
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i = 1,…, sfor

However we have to account for some constraints

So, first step is to

arg min
w [ α

2
∥w∥2]

yi (⟨xi, w⟩ + b) − 1 ≥ 0

Hence, the problem can be written as
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i = 1,…, sfor

However we have to account for some constraints

arg min
w [

s

∑
i=1

max (0,1 − yi ⟨xi, w⟩) +
α
2

∥w∥2]

So, first step is to

arg min
w [ α

2
∥w∥2]

yi (⟨xi, w⟩ + b) − 1 ≥ 0

Hence, the problem can be written as
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i = 1,…, sfor

However we have to account for some constraints

arg min
w [

s

∑
i=1

max (0,1 − yi ⟨xi, w⟩) +
α
2

∥w∥2]

So, first step is to

arg min
w [ α

2
∥w∥2]

yi (⟨xi, w⟩ + b) − 1 ≥ 0

Hence, the problem can be written as

Since  can be included in b w0
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arg min
w [

s

∑
i=1

max (0,1 − yi ⟨xi, w⟩) +
α
2

∥w∥2]
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arg min
w [

s

∑
i=1

max (0,1 − yi ⟨xi, w⟩) +
α
2

∥w∥2]
Penalties for mislabelling
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arg min
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∑
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max (0,1 − yi ⟨xi, w⟩) +
α
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∥w∥2]
Penalties for mislabelling

yi⟨xi, w⟩ − 1 ≥ 0If we will end up with a correct labelling

This implies non positive values of 1 − yi⟨xi, w⟩
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arg min
w [

s

∑
i=1

max (0,1 − yi ⟨xi, w⟩) +
α
2

∥w∥2]
Penalties for mislabelling Penalty for distance

yi⟨xi, w⟩ − 1 ≥ 0If we will end up with a correct labelling

This implies non positive values of 1 − yi⟨xi, w⟩
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arg min
w [

s

∑
i=1

max (0,1 − yi ⟨xi, w⟩) +
α
2

∥w∥2]
Penalties for mislabelling Penalty for distance

Note how the max here does not allow us to use the usual machinery

as it is not differentiable

yi⟨xi, w⟩ − 1 ≥ 0If we will end up with a correct labelling

This implies non positive values of 1 − yi⟨xi, w⟩
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The first term L(w) :=
s

∑
i=1

max (0,1 − yi⟨xi, w⟩) is also known as the Hinge-loss

Hinge(z) = max(0,1 − yz)

=: [1 − yz]+

that makes use of the Hinge function

−2 −1 0 1 2 3

0

1

2

3

f

y = 1

Looks like a door hinge, therefore the name
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Consider y ∈ {−1,1}

then the MSE, logistic regression and Hinge loss can be written as 

Hinge(z) = max(0,1 − yz)

MSE(z) = (1 − yz)2

LogisticLoss(z) = log (1 + e−yz)

−2 −1 0 1 2 3
0
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Comparison of loss functions for y=1

 

 

MSE
Logistic
Hinge

z
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ŵ = arg min
w {

s

∑
i=1

max (0,1 − yi⟨xi, w⟩) +
α
2

∥w∥2}
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ŵ = arg min
w {

s

∑
i=1

max (0,1 − yi⟨xi, w⟩) +
α
2

∥w∥2}
= arg min

w {
s

∑
i=1

max (0,1i − (YXw)i) +
α
2

∥w∥2}

Y = diag(y) :=

y1 0 0 ⋯ 0
0 y2 0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ys

for 1 = (1,1,⋯,1)Tand
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min
w {

s

∑
i=1

max (0, ) +
α
2

∥w∥2}1 − yi⟨xi, w⟩

How can we solve this optimisation problem?
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Note that we can reformulate

min
w {

s

∑
i=1

max (0, ) +
α
2

∥w∥2}
to

min
w { max

λ∈[0,1]s

s

∑
i=1

+
α
2

∥w∥2}
because of max(0,z) = max

λ∈[0,1]
λz

1 − yi⟨xi, w⟩

λi (1 − yi⟨xi, w⟩)

How can we solve this optimisation problem?
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min
w {

s

∑
i=1

max (0, ) +
α
2

∥w∥2}
to

min
w { max

λ∈[0,1]s

s

∑
i=1

+
α
2

∥w∥2}
because of max(0,z) = max

λ∈[0,1]
λz

(Λ (1 − YXw))i

1i − (YXw)i

Λ := diag(λ)for

Note that we can reformulateHow can we solve this optimisation problem?
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Assume for the moment that we can swap min and max, i.e.

min
w { max

λ∈[0,1]s

s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2} = max
λ∈[0,1]s {min

w

s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2}



Support vector machines

24

Assume for the moment that we can swap min and max, i.e.

min
w { max

λ∈[0,1]s

s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2} = max
λ∈[0,1]s {min

w

s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2}
Then the (new) inner optimisation problem becomes differentiable

min
w {L(w, λ) :=

s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2}



Support vector machines

24

Assume for the moment that we can swap min and max, i.e.

min
w { max

λ∈[0,1]s

s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2} = max
λ∈[0,1]s {min

w

s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2}
Then the (new) inner optimisation problem becomes differentiable

min
w {L(w, λ) :=

s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2}
The function is convex! We can just compute the gradient and set it to zero
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We can re-write the function as

L(w, λ) =
s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2
(Simplified notation

lambdas and ys are

diagonal matrices)
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We can re-write the function as

L(w, λ) =
s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2

=
s

∑
i=1

λi 1 − yi ∑
j

xijwj +
α
2 ∑

j

w2
j

Hence

∇L(w, λ)p =
∂

∂wp

s

∑
i=1

λi 1 − yi ∑
j

xijwj +
α
2

∂
∂wp ∑

j

w2
j

(Simplified notation

lambdas and ys are

diagonal matrices)
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∇L(w, λ)p =
∂

∂wp

s

∑
i=1

λi 1 − yi ∑
j

xijwj +
α
2

∂
∂wp ∑

j
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∇L(w, λ)p =
∂

∂wp

s

∑
i=1

λi 1 − yi ∑
j

xijwj +
α
2

∂
∂wp ∑

j

w2
j

= −
s

∑
i=1

λiyixip + αwp

= −
s

∑
i=1

x⊤
piλiyi + αwp

→ ŵ =
1
α

X⊤Yλ → ŵ =
1
α

X⊤YΛ
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min
w {L(w, λ) :=

s

∑
i=1

(Λ (1 − YXw))i
+

α
2

∥w∥2}
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min
w {L(w, λ) :=

s

∑
i=1

(Λ (1 − YXw))i
+

α
2

∥w∥2}
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s

∑
i=1

(Λ (1 − YXw))i
+

α
2

∥w∥2}

= {
s

∑
i=1

[λ (1 −
1
α

YXX⊤Yλ)]
i
+

1
2α

∥X⊤Yλ∥2}

Let us plug the solution we just found and try to solve the outer problem  
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α
2
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= {
s

∑
i=1

[λ (1 −
1
α

YXX⊤Yλ)]
i
+

1
2α

∥X⊤Yλ∥2}

Let us plug the solution we just found and try to solve the outer problem  
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̂λ = arg max
λ∈[0,1]s {⟨λ, 1⟩ −

1
2α

∥X⊤Yλ∥2}
= arg max

λ {⟨λ, 1⟩ −
1

2α
∥XTYλ∥2 − χ[0,1]s(λ)}

χ[0,1]s(λ) = 0 if λ ∈ [0,1]

χ[0,1]s(λ) = ∞ if λ ∉ [0,1]
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We can solve this problem for example via projected gradient ascent

λk+1 = proj[0,1]s [λk + τ (1 −
1
α

YXX⊤Yλk)]
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We can solve this problem for example via projected gradient ascent

λk+1 = proj[0,1]s [λk + τ (1 −
1
α

YXX⊤Yλk)]

Why gradient ascent?
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Note that once we have computed a numerical approximation 
for    , we can compute       viâλ ŵ

ŵ =
1
α

X⊤Y ̂λ
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Note that once we have computed a numerical approximation 
for    , we can compute       viâλ ŵ

ŵ =
1
α

X⊤Y ̂λ

But the question that we have to ask ourselves now is: is this actually a 
solution of

ŵ = arg min
w {

s

∑
i=1

max (0,1 − yi⟨xi, w⟩) +
α
2

∥w∥2} ?
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This question boils down to when can we guarantee 

min
x

max
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f(x, y) = max
y

min
x

f(x, y) ?
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Duality

This question boils down to when can we guarantee 

min
x

max
y

f(x, y) = max
y

min
x

f(x, y)

Max-min inequality tells us max
y

min
x

f(x, y) ≤ min
x

max
y

f(x, y)

so equality is possible, but we can have

max
y

min
x

f(x, y) < min
x

max
y

f(x, y)

?
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Duality
Example: f(x, y) = sin(x + y)

Across all x the min

is -1. After I have 

reached the min in x

with y mute, the max is 

unchanged!
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Duality
Example: f(x, y) = sin(x + y)

−1 = max
y

min
x

sin(x + y) < min
x

max
y

sin(x + y) = 1⇒

Across all x the min

is -1. After I have 

reached the min in x

with y mute, the max is 

unchanged!
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Duality
Recall: definition of convexity

f : C → ℝA function over a convex set    is called convex if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

is satisfied for all              and              .x, y ∈ C λ ∈ [0,1]

C
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Duality
Recall: definition of convexity

f : C → ℝA function over a convex set    is called convex if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

is satisfied for all              and              .x, y ∈ C λ ∈ [0,1]

C

Similarly we can define concavity:

f : C → ℝA function over a convex set    is called concave if

f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y)

is satisfied for all              and              .x, y ∈ C λ ∈ [0,1]

C
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Duality
Minimax Theorem (von Neumann 1928)
Let X ⊂ ℝm and Y ⊂ ℝn be compact, convex sets.

If f : X × Y → ℝ is a continuous function that is convex-concave, i.e.

f( ⋅ , y) : X → ℝ is convex for fixed y
f(x, ⋅ ) : Y → ℝ is concave for fixed x

Then the max-min inequality is an equality, i.e.

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y) .
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Convex-concave 
saddle-point problem

x

y
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Convex-concave 
saddle-point problem

x

y

Function is convex

in x

Function is concave

in y
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x

y

What happens if we 
start from a point x,y

we minimize in x and 
then maximize in y?
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x

y

What happens if we 
revert? First maximize 
in y and then minimize 
in x?
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So, you can switch min and max if you are minimizing a convex function and 
maximizing a concave function!
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Duality

L(w, λ) =
s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2

is convex in w ∈ ℝn and concave in λ ∈ [0,1]sL : ℝn × [0,1]s → ℝ
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Duality

L(w, λ) =
s

∑
i=1

λi (1 − yi⟨xi, w⟩) +
α
2

∥w∥2

is convex in w ∈ ℝn and concave in λ ∈ [0,1]sL : ℝn × [0,1]s → ℝ

Hence, min
w∈ℝn

max
λ∈[0,1]s

L(w, λ) = max
λ∈[0,1]s

min
w∈ℝn

L(w, λ) .

min
w∈ℝn {

s

∑
i=1

max (0,1 − yi⟨xi, w⟩) +
α
2

∥w∥2}
=
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What we have done so far works

for data that looks like this

- --

-

-

-
-

-
-

-

+ +
++

+
+
+

+

+

A linear function can be used as

decision boundary
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What if the data is like this?!

-

-

-

-

-

-
-

-

-

- + +
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+
+
+

+

+
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Idea: we can project the data into an higher dimensional space where the 
separation might be clear!
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44

In this case, we moved from a two dimensional space (i.e., ) to a three 
dimensional space (i.e., )

xi ∈ ℝ2

x′￼i ∈ ℝ3

-
-

-
--

- -
-

-
-

++++
+++++The shift is done thanks to the so-called feature map

xi → ϕ(xi) = x′￼i
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We already saw an example of feature map…

The polynomial basis!

xi = (1,xi) ϕ(xi) = (1,xi, x2
i , …, xk

i )

⟨xi, w⟩ = w0 + w1xi ⟨ϕ(xi), w⟩ = w0 + w1xi + … + wdxk
i
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Feature maps can be anything

For example 

x = (1,x1, x2) ϕ(x) = (1,x2
1 , x2

2 , 2x1x2)

⟨x, w⟩ = w0 + w1x1 + w2x2 ⟨ϕ(x), w⟩ = w0 + w1x2
1 + w2x2

2 + 2w3x1x2
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Feature maps

47

Given a feature map, like for example

We can compute the scalar product in the feature space

ϕ(x) = (x2
1 , x2

2 , 2x1x2)

⟨ϕ(x), ϕ(z)⟩ = (x2
1 , x2

2 , 2x1x2)
z2
1

z2
2

2z1z2

= (x1z1 + x2z2)2 = ⟨x, z⟩2

This is called kernel function κ(x, z) = ⟨x, z⟩2

Note how to compute the kernel function we do not need to know the 
expression of phi! This is the kernel trick
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Kernel trick

48

A big advantage of the kernel trick is that we do not need to specify        explicitly ϕ(x)

For a kernel function           we can define a matrix      as κ(x, z) Kij := κ(xi, zj)K

Examples: κ(x, z) = ϕ(x)Tϕ(z) = xTzϕ(x) = x ⇒

ϕ(x) =

x2
1

x2
2

x2
3

2x1x2

2x1x3

2x2x3

⇒ κ(x, z) = ϕ(x)Tϕ(z) = (x1z1 + x2z2 + x3z3)2
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Working with  instead of    is known as the kernel trickK ϕ(X)

K = Φ(X)TΦ(X) =

∥ϕ(x1)∥2 ⟨ϕ(x1), ϕ(x2)⟩ ⋯ ⟨ϕ(x1), ϕ(xs)⟩
⟨ϕ(x2), ϕ(x1)⟩ ∥ϕ(x2)∥2 ⋯ ⟨ϕ(x2), ϕ(xs)⟩

⋮ ⋮ ⋱ ⋮
⟨ϕ(xs), ϕ(x1)⟩ ⟨ϕ(xs), ϕ(x2)⟩ ⋯ ∥ϕ(xs)∥2

Kernel trick



50https://www.youtube.com/watch?v=3liCbRZPrZA

-

-

-
-

-

-
-

-

-
-

++
++

++ +++

How can we get this?

Kernel trick

https://www.youtube.com/watch?v=3liCbRZPrZA
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By using a radial basis function kernel

κ(x, z) = exp (−
1
2

(x − z)T(x − z))

Kernel trick

In summary, we can just define the transformation needed, considering the

kernel function, without needing to explicitly define the feature map that 

does that!
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Kernel trick
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When does there exist a corresponding feature-map?

Kernel trick
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When does there exist a corresponding feature-map?

K with                    should be symmetric, i.e.Kij := κ(xi, zj)

κ(x, z) = κ(z, x) ∀x, z ∈ ℝn

1.)

2.) should be positive semi-definite, i.e.K

xTKx ≥ 0 ∀x ∈ ℝn

Kernel trick
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Kernel SVM

53

̂λ = arg max
λ∈[0,1]s {⟨λ, 1⟩ −

1
2α

∥XTYλ∥2}
Recall the SVM problem 

Gradient of differentiable part L(λ) = ⟨λ, 1⟩ −
1

2α
∥XTYλ∥2:

∇L(λ) = 1 −
1
α

YT YλXXT → ∇L(λ) = 1 −
1
α

YTKYλ

Hence, any SVM-algorithm that works with this gradient can be kernelised


