
WEEK 10 NOTES

We continue studying heat equations this week.

1. HEAT EQUATIONS ON AN INTERVAL (CONTINUED)

For the heat equation on an interval with Dirichlet boundary conditions

Ut = κUxx, x ∈ [0, L], t > 0,

U(x, 0) = f(x),

U(0, t) = 0, U(L, t) = 0.

We showed last week using separation of variables that the general solutions are

(1.1) U(x, t) =

∞∑
n=1

ane
−π2n2

L2 κt sin

(
πnx

L

)
.

We will next use the initial condition U(x, 0) = f(x) to determine the an coefficients.

1.1. Initial conditions. The condition U(x, 0) = f(x) with 0 < x < L fixes the solution.
Evaluating (1.1) at t = 0 one has

f(x) =

∞∑
n=1

an sin

(
πnx

L

)
.

This is a Fourier sine series —we have already found these series a couple of times before.
The coefficients an are then determined via the Fourier coefficients —thus,

an =
2

L

∫ L

0

f(x) sin

(
πnx

L

)
dx.

1.2. Examples. We now look at some concrete examples of the discussion in the previous
paragraphs.

Example 1.1. Let the initial conditions be given by

f(x) = sin
(πx
L

)
.

It follows then that

U(x, 0) =

∞∑
n=1

an sin
(nπx

L

)
= sin

(πx
L

)
.

Comparing the two sides of the last equality, and given that the sine functions in the infinite
series are independent of each other one finds that

a1 = 1, an = 0, n ≥ 2.

Thus, the particular solution to the heat equation is given by

U(x, t) = e−π2κt/L2

sin
(πx
L

)
.

A plot of the solution for various values of t is given below. Observe that

U(x, t) → 0, as t → ∞.
1
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Example 1.2. Let the initial conditions be given by

f(x) = 1, x ∈ [0, L].

In this case we have to explicitly compute the Fourier coefficients —this is because the
constant function does not appear in the series. One has that

an =
2

L

∫ L

0

sin
(nπx

L

)
dx = − 2

nπ
cos

(nπx
L

) ∣∣∣∣L
0

= − 2

nπ

(
(−1)n − 1)

=

{
0 n even
4

nπ
n odd

Hence, one can write

U(x, t) =
4

π

∞∑
n odd

e−n2π2κt/L2

sin
(nπx

L

)
.

A plot of the solution for various values of t > 0 is given below:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2



WEEK 10 NOTES 3

Observe that the solution for t > 0 instantly drops to 0 at the ends. Observe that for
n ≥ 3 one has that

e−π2κt/L2

>> e−9π2κt/L2

.

Thus, one has that

U(x, t) ≈ 4

π
e−π2κt/L2

sin
(πx
L

)
.

In other words, the first term in the infinite series dominates.

Example 1.3. Let L = 1 and

f(x) =

{
1 0 < x < 1/2
0 1/2 < x < 1

.

Again, we need to compute explicitly the Fourier coefficients. In this case we have

an = 2

∫ 1/2

0

sin(nπx)dx = − 2

nπ
cos(nπx)

∣∣∣∣1/2
0

= − 2

nπ

(
cos(

nπ

2
)− 1

)
.

Hence,

U(x, t) =
2

π

∞∑
n=1

(
1− cosnπ/2

n

)
e−n2π2κt sinnπx.

Observe that
1− cos

nπ

2
= 1, 2, 1, 0, 1, 2, . . . .

A plot of the solution for various t > 0 is given below:
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Observe that initially one has a step. The solution immediately becomes smooth. It gets
more symmetric and sinusoidal as time increases.

Next, let’s consider a mixed boundary condition problem for heat equations on an inter-
val.

Example 1.4. 
Ut − Uxx = 0, x ∈ [0, π

2 ]

U(x, 0) = 2 cosx

Ux(0, t) = 0, U(π2 , t) = 0.

Here we have the heat constant κ = 1.
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Suppose we have a separated variable solution U(x, t) = X(x)T (t), we then get

XṪ = X ′′T

Ṫ

T
=

X ′′

X
= −λ,

where λ is a constant. As before, this gives us 2 ODEs

X ′′ = −λX

Ṫ = −λT.

Combing the ODE of X with the boundary conditions give us the following boundary
value problem.

X ′′ = −λX

X ′(0) = 0, X(
π

2
) = 0.

As before, using the boundary conditions and integration by parts, we can show that the
eigenvalues satisfy λ > 0 and so the general solutions for X is

X(x) = A cos
√
λx+B sin

√
λx

X ′(x) = −A
√
λ sin

√
λx+B

√
λ cos

√
λx.

Using the first boundary condition, we get

0 = X ′(0) = 0 +B
√
λ.

So B = 0 and A ̸= 0. Using the second boundary condition, we get

0 = X ′(L) = A cos
√
λL.

So
√
λL = nπ − 1

2π.
We get the eigenvalues are λn = (2n− 1)2, for n = 1, 2 . . . and the eigenfunctions are

Xn(x) = cos[(2n− 1)x].

Knowing λn, we can go back to solve the ODE Ṫ = −λnT for T and get

Tn(t) = e−(2n−1)2t.

Then general solutions are

U(x, t) =

∞∑
n=1

anXn(x)Tn(t) =

∞∑
n=1

ane
−(2n−1)2t cos[(2n− 1)x].

Next, we use the initial condition to specify the a′ns. When t = 0, we have

2 cosx = U(x, 0) =

∞∑
n=1

an cos[(2n− 1)x].

By the orthogonality of the cos[(2n − 1)x] trigonometric functions, we “observe” that
an = 0 except for n = 1. Moreover, the n = 1 term have to match and so a1 = 2. Thus
the solution to this question is

U(x, t) = 2e−t cosx.
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2. ENERGY FOR HEAT EQUATION ON THE INTERVAL AND APPLICATIONS

Recall that the wave equation has an energy quantity that was preserved along time,
which was useful in proving uniqueness of solutions to the wave equations. We can also
define an energy quantity for the heat equation.

Consider the heat equation on the interval with fixed boundary condition from the last
section

Ut = κUxx, x ∈ [0, L], t > 0,

U(x, 0) = f(x),

U(0, t) = 0, U(L, t) = 0.

We define the energy to be

E[U ](t) =
1

2

∫ L

0

U2(x, t)dx.

Proposition 2.1. The energy is non-increasing along time. It’s preserved along time if and
only if U is constant.

Proof.

d

dt
E[U ](t) =

d

dt

[
1

2

∫ L

0

U2(x, t)dx

]

=
1

2

∫ L

0

2U(x, t)Ut(x, t))dx

=κ
∫ L

0

U(x, t)Uxx(x, t))dx

=κU · Ux|L0 −
∫ L

0

κ(Ux)
2dx

=− κ
∫ L

0

(Ux)
2dx

≤0.

So the energy is non-increasing along time.
Since U2

x ≥ 0, so the energy is preserved if and only if Ux ≡ 0.
If Ux ≡ 0, we have Uxx ≡ 0 and Ut = κUxx =≡ 0. So if the energy is preserved along

time, U must be constant. □

By the Wirtinger inequality (we will use it here without proof): if f satisfies f(0) =
f(L) = 0 on the interval [0, L], we must have

∫ L

0

[f2(x)]dx ≤ C0

∫ L

0

[f ′(x)]2dx,
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for some universal constant C0 > 0. Using this we have the energy satisfies

d

dt
E[U ](t) ≤− κ

∫ L

0

(Ux)
2dx

≤−κ
C0

∫ L

0

U2dx

=
−2κ
C0

E[U ](t).

This gives the decay of energy

E[U ](t) ≤ E[U ](0) · e
−2κ
C0

t → 0,

as t → ∞.
As an application of the non-increasing of energy, we show the uniqueness of solutions

of heat equations on interval with initial and boundary conditions.

Theorem 2.2. Let U1 and U2 are 2 solutions to the following heat equation an interval
with initial and Dirichlet boundary conditions:

Ut = κUxx, x ∈ [0, L]

U(x, 0) = f(x)

U(0, t) = h(t), U(L, t) = g(t).

Then we must have U1 ≡ U2.

Proof. Let V (x, t) = U1(x, t)−U2(x, t). Then by the principle of superposition, we have
V satisfies the equation

Vt = κVxx, x ∈ [0, L]

V (x, 0) = 0

V (0, t) = 0, V (L, t) = 0.

The energy at time t = 0 is E[V ](0) = 0. By the non-increasing of energy Proposition 2.1
d
dtE[V ](t) ≤ 0 and the fact that E[V ](t) ≥ 0, we must then have

E[V ](t) ≡ 0.

So V ≡ 0 for all t ≥ 0 and U1 = U2. □

3. THE HEAT EQUATION ON THE REAL LINE

In this section we will see how to solve the problem

Ut = κUxx, x ∈ R, t > 0,

U(x, 0) = f(x).

That is, we want to solve the heat equation on the real line given that we know the initial
form of U .

In order to solve this problem we will need some further assumptions on the solution
U(x, t) and the initial data f(x). In particular, we want U(x, t) to be absolutely integrable
—that is,

(3.1)
∫ ∞

−∞
|U(x, t)|dx < ∞.
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Also, we require that U and Ux go to zero at infinity —that is,

U(x, t), Ux(x, t) −→ 0, x → ±∞.

Note. Observe that to have condition (3.1) one needs U(x, t) to go to zero at infinity.

We also require f to be absolutely integrable:∫ ∞

−∞
f(x)dx < ∞.

Example 3.1. Functions which are absolutely integrable are special —i.e. not all functions
are absolutely integrable. Some examples are:

(i) f(x) = sinx. One then has that∫ ∞

−∞
| sinx|dx = ∞.

That is, sinx is not integrable.
(ii) Let

f(x) =
1

1 + x2
.

One has that∫ ∞

−∞

∣∣∣∣ 1

1 + x2

∣∣∣∣ dx =

∫ ∞

−∞

1

1 + x2
dx = arctanx

∣∣∣∣∞
−∞

=
π

2
−

(
− π

2

)
= π < ∞.

Thus f(x) = 1/(1 + x2) is absolutely integrable.
(iii) Let f(x) = e−x2

. From Calculus we know that∫ ∞

−∞
e−x2

dx =
√
π < ∞,

so, again, absolutely integrable.

3.1. Invariance properties of the heat equation. An important property of the heat equa-
tion involves the behaviour of its solutions with respect to scalings of the coordinates. More
precisely,

Lemma 3.2. If U(x, t) solves the heat equation then also V (x, t) ≡ U(ax, a2t) also
solves the heat equation.

Proof. Let v = ax, w = a2t. Then, using the chain rule one finds that

Ut(v, w) =
∂w

∂t
Uw(v, w) = a2Uw(v, w),

Ux(v, w) =
∂v

∂x
Uv(v, w) = aUv(v, w),

Uxx(v, w) = a2Uvv(v, w).

Hence,

Ut(ax, a
2t)− κUxx(ax, a

2t) = a2
(
Uw(v, w)− κUvv(v, w)

)
= 0.

□
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Note. Observe that
v2

w
=

a2x2

a2t
=

x2

t
.

Thus, this hints that the ratio x2/t is important for the heat equation. Thus, it makes sense
to look for solutions of the form

U(x, t) = F

(
x2

t

)
.

In the following we will look for solutions with a slightly different form.

3.2. Invariant solutions. In this section we consider solutions to the heat equation of the
form

(3.2) U(x, t) =
1

tα/2
F

(
x√
t

)
with α a constant to be determined. In view of the scaling property of solutions to the heat
equation, the U(x, t) as given by (3.2) satisfies the property

U(x, t) =
1

tα/2
U

(
x√
t
, 1

)
.

That is, solutions of the form (3.2) have invariance properties.

We now compute the partial derivatives of U(x, t) as given by (3.2). For convenience,
let

z ≡ x√
t
.

Using the chain rule one finds that

Ux(x, t) =
1

tα/2+1/2
F ′(z),

Uxx(x, t) =
1

tα/2+1
F ′′(z),

Ut(x, t) = − α

2tα/2+1
F (z)− z

2tα/2+1
F ′(z).

Thus, the heat equation gives

− α

2tα/2+1
F (z)− z

2tα/2+1
F ′(z) =

κ
tα/2+1

F ′′(z).

So, if t ̸= 0, the latter can be simplified to

(3.3) κF ′′(z) +
z

2
F ′(z) +

α

2
F (z) = 0,

that is, we have obtained an ode for F (z). In order to solve it, we need to fix the value of α.
This requires making use of the extra requirements on U(x, t) like absolute integrability
—condition (3.1). In this relation it is noticed the following:

Lemma 3.3. Let U(x, t) be a solution to the heat equation which is absolutely integrable
and satisfying Ux(x, t) → 0 as x → ±∞. Then∫ ∞

−∞
U(x, t)dx

is constant for t ≥ 0.
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Proof. To see this integrate the heat equation over the real line:∫ ∞

−∞
Ut(x, t)dx = κ

∫ ∞

−∞
Uxx(x, t)dx.

This can be rewritten, using the Fundamental Theorem of Calculus as

d

dt

∫ ∞

−∞
U(x, t)dx = κUx(x, t)

∣∣∣∣∞
−∞

= 0.

The last equality follows from the requirement that Ux goes to zero at infinity. Thus, the
integral ∫ ∞

−∞
U(x, t)dx

does not depend on t —that is, it is constant. □

Note. Without loss of generality we can set

(3.4)
∫ ∞

−∞
U(x, t)dt = 1.

Recalling that U(x, t) = t−α/2F (x/
√
t) it follows then from equation (3.4) that

1 =
1

tα/2

∫ ∞

−∞
F

(
x√
t

)
dx

=

√
t

tα/2

∫ ∞

−∞
F (z)dz,

where in the last line we have used the change of coordinates z = x/
√
t. Thus, setting

α = 1

we obtain

(3.5)
∫ ∞

−∞
F (z)dz = 1.

With this choice of the constant α equation (3.3) reduces to

κF ′′ +
z

2
F ′ +

1

2
F = 0.

One can readily check that

κF ′′ +
z

2
F ′ +

1

2
F = κF ′′ +

1

2

(
zF

)′
=

(
κF ′ +

z

2
F

)′

= 0.

Hence, integrating one obtains

κF ′ +
z

2
F = C = constant.

To determine the constant C it is observed that in order for equation (3.5) to make sense
one needs that

F (z), F ′(z) −→ 0 as z −→ ±∞.
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Thus, in fact, one has that
C = 0

and the differential equation reduces to

κF ′ +
z

2
F = 0.

This is an equation that can be readily solved by means separation. Writing it in the form

dF

dz
= − z

2κ
F

one then has that ∫
dF

F
= − 1

2κ

∫
zdz + C̃,

with C̃ an integration constant. Writing, for convenience, the integrating constant as ln C̃
one obtains

lnF = − 1

4κ
z2 + ln C̃,

so that
F (z) = C̃e−z2/4κ .

To determine the integration constant we recall, again, the normalisation condition (3.5).
It follows then that

1 = C̃

∫ ∞

−∞
e−z2/4κdz

= C̃

∫ ∞

−∞
e−y2

2
√
κdy

= 2C̃
√
κπ,

where in the second line we have used the substitution y = z/2
√
κ. Hence,

C̃ =
1√
4κπ

,

so that

F (z) =
1√
4κπ

e−z2/4κ .

Recalling the ansatz (3.2) one finally finds that

U(x, t) =
e−

x2

4κt

√
4κπt

.

This solution is known as the heat kernel or fundamental solution of the heat equation.
We denote it by:

K(x, t) =
e−

x2

4κt

√
4κπt

.

We note the following properties:
(i) By construction K(x, t) satisfies the heat equation. That is,

Kt = κKxx, x ∈ R, t > 0.

(ii) The heat kernel is an even function —that is, K(x, t) = K(−x, t).
(iii) K(x, t) is a smooth function (i.e. C∞) for x ∈ R, t > 0.
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(iv) One has that ∫ ∞

−∞
K(x, t)dx = 1, t ≥ 0.

(v) For x ̸= 0 one has that

K(x, t) → 0, as t → 0+,

while for x = 0 one has that

K(0, t) → ∞, as t → 0+.

(vi) For any x ∈ R, one has

K(x, t) → 0, as t → ∞

Remark 3.4. Properties (i)-(iv) above, follow from the construction of the heat Kernel given
in the previous section. Only property (v) requires further work. If x ̸= 0 then to compute
the limit it is enough to consider

e−1/t

√
t

=
1√
te1/t

−→ 0 as t → 0+,

given that e1/t → ∞ and recalling that the exponential grows faster than any power of t so
it dominates

√
t. For x = 0 one has that

K(0, t) =
e0√
4πκt

=
1√
4πκt

−→ ∞ as t → 0+.

Note. Property (v) together with (iv) show that K(x, 0) is a very special object —in fact,
it turns out that K(x, 0) cannot be a function. It is a more general type of object known as
generalised function or distribution.


