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Today’s agenda

Today’s lecture

Understand Metropolis-Hastings

Apply Metropolis-Hastings in Bayesian inference to generate samples
from the posterior pdf.
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Markov Chain Monte Carlo (MCMC)

Recall, Monte Carlo integration approximates integrals of various
functions h(x)

I =
∫
h(x)f(x) dx = Ef [h(X)], X ∼ f

by directly sampling iid samples from the pdf f or from the posterior
pdf in Bayesian inference.

Let X1, . . . , Xn iid ∼ f , the Monte Carlo estimator of I is given by

Î = 1
N

N∑
i=1

h(Xi).
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Markov Chain Monte Carlo (MCMC)

Question: But what if we cannot sample directly from f?
- f is not analytically tractable.
- Then, simple Monte Carlo integration cannot be used.

In Bayesian inference, if we use a non-conjugate prior, then the
posterior distribution may not be a well-known distribution.
- our prior beliefs may not be captured using a conjugate prior
- conjugate prior is unavailable for complicated problems
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Motivating example

Let x = (x1, . . . , xn) IID from N(µ, σ2), with µ known and σ2

unknown.

We showed that a gamma(α, β) prior for τ = 1/σ2 is conjugate.

But what if a gamma(α, β) does not adequately represent our prior
beliefs?
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Motivating example

Instead, we assume that our prior beliefs are represented by the
lognormal(θ, v2) distribution with pdf

p(τ) = 1
τv
√

2π
exp

{
− (log τ − θ)2

2v2

}
, τ > 0,

where θ and v2 are known.

What is the posterior density of τ under the lognormal prior and
normal likelihood? What is the posterior mean of τ?
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MCMC can help when f is not analytically tractable

Markov Chain Monte Carlo (MCMC) is a set of methods that can
generate a sample with pdf f without having to sample from f

directly.

Thus, MCMC can be used to generate samples from complicated
probability distributions.

At the price, however, of yielding dependent observations that are
approximately from f .

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Markov Chain Monte Carlo (MCMC)

The general idea of MCMC methods is to construct a sequence of
RV X1, X2 . . . ,, called Markov chain, which (hopefully) converges to
the distribution of interest f .

However, X1, X2 . . . , is NOT independent any more.

But it can still be used to estimate means, Ef [h(X)], because there
is a WLLN for Markov chains.

Under certain conditions,

Î = 1
N

N∑
i=1

h(Xi)
P−→ Ef [h(X)] = I, as N →∞.
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Markov chains

What is a Markov Chain?

Definition (Markov Chain). A Markov chain is a sequence
X1, X2, . . . of random variables such that the probability distribution
of Xi (pmf or pdf) only depends on the previous value Xi−1

p(Xi | X1, X2, . . . Xi−2, Xi−1) = p(Xi | Xi−1).

The process depends on the past only through the present.
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Example: Random walk

As an example of a Markov chain is the random walk starting at
X1 = 1.
Suppose X1 = 1, and for i > 1

P (Xi = Xi−1 + 1) = 1/2,
P (Xi = Xi−1 − 1) = 1/2.

So you flip a coin move +1 steps if heads, move -1 steps if tails.

At step i of this Markov chain, Xi−1 is either increased or decreased
by 1 with probability 1

2 .
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Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a type of MCMC that works as
follows.

Let q(y|x) be a conditional density that we know how to sample
from.

q(y|x) is called the proposal distribution.

The Metropolis-Hastings algorithm creates a Markov Chain
(dependent observations) X1, X2, . . . as follows.
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Metropolis-Hastings algorithm

Choose X1 arbitrarily. Suppose we have generated X1, . . . , Xi. To
generate Xi+1 do the following:

1 Generate a proposal or candidate random value Y ∼ q(y|Xi).
2 Evaluate r ≡ r(Xi, Y ) where

r(x, y) = min
{f(y)
f(x)

q(x|y)
q(y|x) , 1

}
.

3 Generate U ∼ U(0, 1). If U < r, set Xi+1 = Y , otherwise set
Xi+1 = Xi.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Metropolis algorithm terminology

q is the proposal distribution: we propose new rv Y using the
conditional distribution q(· | Xi) that depends on Xi (not on the
past).

MH accepts Y with probability

r ≡ r(Xi, Y ) = min
{ f(Y )
f(Xi)

q(Xi|Y )
q(Y |Xi)

, 1
}
,

called the acceptance probability.
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Metropolis algorithm terminology

f is sometimes called the target distribution: this is what we are
aiming for, i.e. we want to generate a sample with pdf f .

In Bayesian inference, f would be the posterior distribution p(θ | y),
and we want a sample of θ values from this posterior distribution.
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Choosing events in computer code

Remarks:

In general, to implement a random event that happens with
probability r:
Generate u ∼ Uniform(0, 1);
Event happens if u ≤ r.
If U is a random variable, with U ∼ Uniform(0, 1), then U has cdf
F (r) = r, so P (U ≤ r) = r.
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Metropolis-Hastings algorithm

Remarks:

A common choice for q(y|x) is N(x, b2) for some b > 0.

This means that the proposal Y is a drawn from normal centered at
the current value.

By symmetry, q(y|x) = q(x|y)

r(x, y) = min
{f(y)
f(x) , 1

}
.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Metropolis-Hastings algorithm

Remarks:

In the algorithm, f only appears in acceptance probability

r(Xi, Y ) = min
{

1, f(Y )
f(Xi)

}
.

The acceptance probability does not depend on the
normalisation constant, i.e. if f(x) = cg(x), where c > 0 doesn’t
depend on x, then

r(Xi, Y ) = min
{

1, g(Y )
g(Xi)

}
.

So we only need to know f up to a normalisation constant. Useful
for Bayesian inference!
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Output of the Metropolis-Hastings algorithm

1 The Metropolis-Hastings algorithm generates a dependent sequence
of observations X1, X2, . . . .

2 Since our procedure for generating Xi+1 depends only on Xi, the
conditional distribution of Xi+1 given X1, . . . , Xi depends only on
Xi.

3 Hence, the sequence X1, X2, . . . is a Markov chain.
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Output of the Metropolis-Hastings algorithm

The chain X1, X2, . . . has the property that:
if Xi−1 ∼ f , then Xi ∼ f .

f is the equilibrium distribution or stationary of the chain.

However, we don’t start with X1 ∼ f (because if we could, we
wouldn’t need this algorithm).

But for large enough i, if some technical conditions are met, then
each Xi ∼ f approximately.
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Output of the Metropolis-Hastings algorithm

1 In practice, we only generate X1, X2, . . . , XN for some large N .

2 Under some conditions, the empirical distribution of X1, X2, . . . , XN

approximates f well if N is large.

3 Hence, we can approximate the integral I =
∫
h(x)f(x) dx using the

approximated X1, X2, . . . , XN , that is

1
N

N∑
i=1

h(Xi), X1, X2, . . . , XN ∼ f (approximately),

and X1, X2, . . . , XN generated by MH.
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Example: Metropolis-Hastings algorithm

The Cauchy distribution has density

f(x) = 1
π(1 + x2)

Our goal is to simulate a Markov chain whose stationary distribution
is f .
Take q(y|x) to be N(x, b2) for some b > 0.
Then,

r(x, y) = min
{1 + x2

1 + y2
, 1
}
.

Let r = r(Xi, Y ). Generate U ∼ U(0, 1). If U < r, set Xi+1 = Y ,
otherwise set Xi+1 = Xi.
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Example: Metropolis-Hastings algorithm
Figure below shows the chains of length N = 1000 using b = 1
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Example: Metropolis-Hastings algorithm
Figure: Histogram of chains and the plot of the Cauchy density (red)
The distribution of chain converges to the desired Cauchy
distribution.

empirical distribution of the chain
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Relevance to Bayesian inference

Let f be the posterior pdf, p(θ | y): this is the distribution we want
to sample from.

Let q(ψ|θi) be a pdf for the proposal ψ which is symmetric in ψ and
θ, e.g., normal N(θi, b

2).

The algorithm constructs a Markov chain θ1, θ2, . . . , where the θi

are continuous rvs (in our applications).
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Relevance to Bayesian inference

q is called the proposal distribution: it is used to generate the next
possible point in the Markov chain.
q is often taken as a normal distribution centred on the current point

ψi ∼ N(θi, b
2), for some b > 0.

The normal pdf is symmetric in θ and ψ, as required by the
algorithm

q(ψ | θ) = 1√
2πb

e
−

(ψ − θ)2

2b2 = 1√
2πb

e
−

(θ − ψ)2

2b2 = q(θ | ψ).
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Relevance to Bayesian inference

The algorithm constructs a Markov chain θ1, θ2, . . . as follows:
Start with arbitrary θ1.
For each i > 1, generate ψi from distribution q(ψ | θi).
Let

r = min
{

1, p(ψ | y)
p(θi | y)

}
Set

θi+1 =
{
ψ with probability r
θi with probability 1− r
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Relevance to Bayesian inference

In Bayesian inference, the posterior density is

p(θ | y) ∝ p(θ) p(y | θ)

It’s difficult to find the normalizing constant∫
p(θ) p(y | θ) dθ

We don’t need to find this, we just put g(θ) = p(θ) p(y | θ), use g in
the algorithm (where we have f), and we will get an approximate
sample from p(θ | y).
The Markov chain θ1, θ2, . . . is this sample.
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Metropolis algorithm for Bayesian inference

Define g(θ) = p(θ) p(y | θ), the non-normalized posterior density.
Generate a Markov chain θ1, θ2, . . . as follows:

Choose some b > 0.
Start with θ1, where g(θ1) > 0.
For each i > 1:

Generate ψ ∼ N(θi, b
2).

Let
r = min

{
1, g(ψ)
g(θi)

}
.

Set

θi+1 =
{
ψ with probability r
θi with probability 1 − r
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Working on the log scale

We usually do the computations using the log of the posterior
density.
The likelihood is typically a product of many terms.

p(y | θ) =
n∏

i=1
p(yi | θ)

Due to finite accuracy of computers, if we multiply these together
for a large dataset, the result is inaccurate.
So calculate

log (p(y | θ)) =
n∑

i=1
log (p(yi | θ))
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Using the log scale

Define L(θ) = log (p(θ) p(y | θ)) = log (p(θ)) + log (p(y | θ)),
the log of the posterior density (up to a constant).
To work on the log scale, the part of the algorithm with the
acceptance probability changes.
Define

δ = min (0,L(ψ)− L(θi−1))

Generate u ∼ Uniform(0, 1)
Set

θi =
{
ψ if log(u) < δ

θi−1 otherwise
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Normal example with known variance

Y1, . . . , Yn iid from N(θ, σ2) where σ2 is known.
θ ∼ N(µ, τ 2) with τ 2 known,
Apply the Metropolis-Hastings algorithm to simulate from the
posterior p(θ|y1, . . . , yn) after observing Y = y
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Metropolis-Hastings algorithm for Bayesian inference

Metropolis-Hastings algorithm generates a dependent sequence
θ(1), . . . , of θ values.

Under mild conditions, the empirical distribution of θ(i), i = 1, 2, . . .
will approximate well the posterior.

We can view θ(i), i = 1, 2, . . . as a sample from the posterior p(θ|y).

Hence, we can approximate posterior means, quantiles and other
posterior quantities of interest using {θ(1), . . . , θ(N)} for large N .

However, our approximation to these quantities will depend on how
well our simulated sequence actually approximates p(θ | y).
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