Lecture 9A MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture

- Understand Metropolis-Hastings
- Apply Metropolis-Hastings in Bayesian inference to generate samples from the posterior pdf.

Markov Chain Monte Carlo (MCMC)

 Recall, Monte Carlo integration approximates integrals of various functions h(x)

$$I = \int h(x)f(x) dx = E_f[h(X)], \quad X \sim f$$

by directly sampling iid samples from the pdf f or from the posterior pdf in Bayesian inference.

• Let X_1, \ldots, X_n iid $\sim f$, the Monte Carlo estimator of I is given by

$$\hat{I} = \frac{1}{N} \sum_{i=1}^{N} h(X_i).$$

E. Solea, QMUL

Markov Chain Monte Carlo (MCMC)

- Question: But what if we cannot sample directly from f?
 - f is not analytically tractable.
 - Then, simple Monte Carlo integration cannot be used.
- In Bayesian inference, if we use a non-conjugate prior, then the posterior distribution may not be a well-known distribution.
 - our prior beliefs may not be captured using a conjugate prior
 - conjugate prior is unavailable for complicated problems

Motivating example

- Let $x=(x_1,\ldots,x_n)$ IID from $N(\mu,\sigma^2)$, with μ known and σ^2 unknown.
- We showed that a gamma (α, β) prior for $\tau = 1/\sigma^2$ is conjugate.
- But what if a gamma (α, β) does not adequately represent our prior beliefs?

Motivating example

• Instead, we assume that our prior beliefs are represented by the $\operatorname{lognormal}(\theta, v^2)$ distribution with pdf

$$p(\tau) = \frac{1}{\tau v \sqrt{2\pi}} \exp\left\{-\frac{(\log \tau - \theta)^2}{2v^2}\right\}, \quad \tau > 0,$$

where θ and v^2 are known.

• What is the posterior density of τ under the lognormal prior and normal likelihood? What is the posterior mean of τ ?

MCMC can help when f is not analytically tractable

- Markov Chain Monte Carlo (MCMC) is a set of methods that can generate a sample with pdf f without having to sample from f directly.
- Thus, MCMC can be used to generate samples from complicated probability distributions.
- At the price, however, of yielding dependent observations that are approximately from f.

Markov Chain Monte Carlo (MCMC)

- The general **idea** of MCMC methods is to construct a sequence of RV X_1, X_2, \ldots , called Markov chain, which (hopefully) converges to the distribution of interest f.
- However, $X_1, X_2 \dots$, is NOT independent any more.
- But it can still be used to estimate means, $E_f[h(X)]$, because there is a WLLN for Markov chains.
- Under certain conditions,

$$\hat{I} = rac{1}{N} \sum_{i=1}^N h(X_i) \stackrel{P}{
ightarrow} E_f[h(X)] = I, \quad ext{as } N
ightarrow \infty.$$

Markov chains

What is a Markov Chain?

• **Definition (Markov Chain).** A Markov chain is a sequence X_1, X_2, \ldots of random variables such that the probability distribution of X_i (pmf or pdf) only depends on the previous value X_{i-1}

$$p(X_i \mid X_1, X_2, \dots X_{i-2}, X_{i-1}) = p(X_i \mid X_{i-1}).$$

• The process depends on the past only through the present.

Example: Random walk

- As an example of a Markov chain is the random walk starting at $X_1 = 1$.
- Suppose $X_1 = 1$, and for i > 1

$$P(X_i = X_{i-1} + 1) = 1/2,$$

 $P(X_i = X_{i-1} - 1) = 1/2.$

- So you flip a coin move +1 steps if heads, move -1 steps if tails.
- At step i of this Markov chain, X_{i-1} is either increased or decreased by 1 with probability $\frac{1}{2}$.

Metropolis-Hastings algorithm

- The Metropolis-Hastings algorithm is a type of MCMC that works as follows.
- Let q(y|x) be a conditional density that we know how to sample from.
- q(y|x) is called the proposal distribution.
- The Metropolis-Hastings algorithm creates a Markov Chain (dependent observations) X_1, X_2, \ldots as follows.

Metropolis-Hastings algorithm

Choose X_1 arbitrarily. Suppose we have generated X_1, \ldots, X_i . To generate X_{i+1} do the following:

- **①** Generate a proposal or candidate random value $Y \sim q(y|X_i)$.
- 2 Evaluate $r \equiv r(X_i, Y)$ where

$$r(x,y) = \min \Big\{ \frac{f(y)}{f(x)} \frac{q(x|y)}{q(y|x)}, 1 \Big\}.$$

 $\mbox{ Generate } U \sim U(0,1). \mbox{ If } U < r \mbox{, set } X_{i+1} = Y \mbox{, otherwise set } X_{i+1} = X_i.$

Metropolis algorithm terminology

- q is the proposal distribution: we propose new rv Y using the conditional distribution $q(\cdot \mid X_i)$ that depends on X_i (not on the past).
- MH accepts Y with probability

$$r \equiv r(X_i, Y) = \min \left\{ \frac{f(Y)}{f(X_i)} \frac{q(X_i|Y)}{q(Y|X_i)}, 1 \right\},\,$$

called the acceptance probability.

Metropolis algorithm terminology

- f is sometimes called the target distribution: this is what we are aiming for, i.e. we want to generate a sample with pdf f.
- In Bayesian inference, f would be the posterior distribution $p(\theta \mid y)$, and we want a sample of θ values from this posterior distribution.

Choosing events in computer code

Remarks:

- In general, to implement a random event that happens with probability r:
- Generate $u \sim \mathsf{Uniform}(0,1)$;
- Event happens if u < r.
- If U is a random variable, with $U \sim \mathsf{Uniform}(0,1)$, then U has cdf F(r) = r, so P(U < r) = r.

Metropolis-Hastings algorithm

Remarks:

- A common choice for q(y|x) is $N(x, b^2)$ for some b > 0.
- This means that the proposal Y is a drawn from normal centered at the current value.
- By symmetry, q(y|x) = q(x|y)

$$r(x,y) = \min \left\{ \frac{f(y)}{f(x)}, 1 \right\}.$$

Metropolis-Hastings algorithm

Remarks:

 \bullet In the algorithm, f only appears in acceptance probability

$$r(X_i, Y) = \min \left\{ 1, \frac{f(Y)}{f(X_i)} \right\}.$$

• The acceptance probability does not depend on the normalisation constant, i.e. if f(x)=cg(x), where c>0 doesn't depend on x, then

$$r(X_i, Y) = \min\left\{1, \frac{g(Y)}{g(X_i)}\right\}.$$

ullet So we only need to know f up to a normalisation constant. Useful for Bayesian inference!

Output of the Metropolis-Hastings algorithm

- ① The Metropolis-Hastings algorithm generates a dependent sequence of observations X_1, X_2, \ldots
- ② Since our procedure for generating X_{i+1} depends only on X_i , the conditional distribution of X_{i+1} given X_1, \ldots, X_i depends only on X_i .
- **3** Hence, the sequence X_1, X_2, \ldots is a Markov chain.

Output of the Metropolis-Hastings algorithm

- The chain X_1, X_2, \ldots has the property that: if $X_{i-1} \sim f$, then $X_i \sim f$.
- f is the equilibrium distribution or stationary of the chain.
- However, we don't start with $X_1 \sim f$ (because if we could, we wouldn't need this algorithm).
- But for large enough i, if some technical conditions are met, then each $X_i \sim f$ approximately.

Output of the Metropolis-Hastings algorithm

- lacksquare In practice, we only generate X_1, X_2, \ldots, X_N for some large N.
- ② Under some conditions, the empirical distribution of X_1, X_2, \dots, X_N approximates f well if N is large.
- ① Hence, we can approximate the integral $I=\int h(x)f(x)\,dx$ using the approximated X_1,X_2,\ldots,X_N , that is

$$\frac{1}{N}\sum_{i=1}^N h(X_i), \quad X_1, X_2, \dots, X_N \sim f$$
 (approximately),

and X_1, X_2, \ldots, X_N generated by MH.

Example: Metropolis-Hastings algorithm

The Cauchy distribution has density

$$f(x) = \frac{1}{\pi(1+x^2)}$$

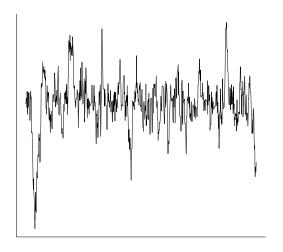
- ullet Our goal is to simulate a Markov chain whose stationary distribution is f.
- Take q(y|x) to be $N(x, b^2)$ for some b > 0.
- Then,

$$r(x,y) = \min \left\{ \frac{1+x^2}{1+y^2}, 1 \right\}.$$

• Let $r = r(X_i, Y)$. Generate $U \sim U(0, 1)$. If U < r, set $X_{i+1} = Y$, otherwise set $X_{i+1} = X_i$.

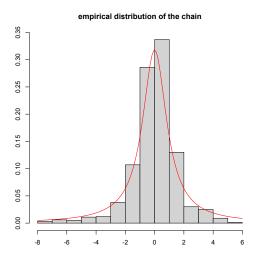
Example: Metropolis-Hastings algorithm

 \bullet Figure below shows the chains of length N=1000 using b=1



Example: Metropolis-Hastings algorithm

- Figure: Histogram of chains and the plot of the Cauchy density (red)
- The distribution of chain converges to the desired Cauchy distribution.



- Let f be the posterior pdf, $p(\theta \mid y)$: this is the distribution we want to sample from.
- Let $q(\psi|\theta_i)$ be a pdf for the proposal ψ which is symmetric in ψ and θ , e.g., normal $N(\theta_i, b^2)$.
- The algorithm constructs a Markov chain $\theta_1, \theta_2, \ldots$, where the θ_i are continuous rvs (in our applications).

- q is called the proposal distribution: it is used to generate the next possible point in the Markov chain.
- q is often taken as a normal distribution centred on the current point

$$\psi_i \sim N(\theta_i, b^2), \ {
m for \ some} \ b>0.$$

• The normal pdf is symmetric in θ and ψ , as required by the algorithm

$$q(\psi \mid \theta) = \frac{1}{\sqrt{2\pi}b} e^{-\frac{(\psi - \theta)^2}{2b^2}} = \frac{1}{\sqrt{2\pi}b} e^{-\frac{(\theta - \psi)^2}{2b^2}} = q(\theta \mid \psi).$$

The algorithm constructs a Markov chain $\theta_1, \theta_2, \ldots$ as follows:

- Start with arbitrary θ_1 .
- For each i > 1, generate ψ_i from distribution $q(\psi \mid \theta_i)$.
- Let

$$r = \min\left\{1, \frac{p(\psi \mid y)}{p(\theta_i \mid y)}\right\}$$

Set

$$\theta_{i+1} = \begin{cases} \psi & \text{with probability } r \\ \theta_i & \text{with probability } 1-r \end{cases}$$

In Bayesian inference, the posterior density is

$$p(\theta \mid y) \propto p(\theta) p(y \mid \theta)$$

It's difficult to find the normalizing constant

$$\int p(\theta) \ p(y \mid \theta) \ d\theta$$

- We don't need to find this, we just put $g(\theta) = p(\theta) p(y \mid \theta)$, use g in the algorithm (where we have f), and we will get an approximate sample from $p(\theta \mid y)$.
- The Markov chain $\theta_1, \theta_2, \ldots$ is this sample.

Metropolis algorithm for Bayesian inference

Define $g(\theta) = p(\theta) \ p(y \mid \theta)$, the non-normalized posterior density. Generate a Markov chain $\theta_1, \theta_2, \ldots$ as follows:

- Choose some b > 0.
- Start with θ_1 , where $g(\theta_1) > 0$.
- For each i > 1:
 - Generate $\psi \sim N(\theta_i, b^2)$.
 - Let

$$r = \min\left\{1, \frac{g(\psi)}{g(\theta_i)}\right\}.$$

Set

$$\theta_{i+1} = \begin{cases} \psi & \text{with probability } r \\ \theta_i & \text{with probability } 1 - r \end{cases}$$

Working on the log scale

- We usually do the computations using the log of the posterior density.
- The likelihood is typically a product of many terms.

$$p(y \mid \theta) = \prod_{i=1}^{n} p(y_i \mid \theta)$$

- Due to finite accuracy of computers, if we multiply these together for a large dataset, the result is inaccurate.
- So calculate

$$\log (p(y \mid \theta)) = \sum_{i=1}^{n} \log (p(y_i \mid \theta))$$

Using the log scale

- Define $\mathcal{L}(\theta) = \log(p(\theta) \ p(y \mid \theta)) = \log(p(\theta)) + \log(p(y \mid \theta))$, the log of the posterior density (up to a constant).
- To work on the log scale, the part of the algorithm with the acceptance probability changes.
- Define

$$\delta = \min \left(0, \mathcal{L}(\psi) - \mathcal{L}(\theta_{i-1}) \right)$$

- Generate $u \sim \mathsf{Uniform}(0,1)$
- Set

$$\theta_i = \begin{cases} \psi & \text{if } \log(u) < \delta \\ \theta_{i-1} & \text{otherwise} \end{cases}$$

Normal example with known variance

- Y_1, \ldots, Y_n iid from $N(\theta, \sigma^2)$ where σ^2 is known.
- ullet $\theta \sim N(\mu, au^2)$ with au^2 known,
- Apply the Metropolis-Hastings algorithm to simulate from the posterior $p(\theta|y_1,\ldots,y_n)$ after observing Y=y

Metropolis-Hastings algorithm for Bayesian inference

- Metropolis-Hastings algorithm generates a dependent sequence $\theta^{(1)}, \ldots, \text{ of } \theta$ values.
- Under mild conditions, the empirical distribution of $\theta^{(i)}$, $i=1,2,\ldots$ will approximate well the posterior.
- ullet We can view $heta^{(i)}$, $i=1,2,\ldots$ as a sample from the posterior p(heta|y).
- Hence, we can approximate posterior means, quantiles and other posterior quantities of interest using $\{\theta^{(1)}, \dots, \theta^{(N)}\}$ for large N.
- However, our approximation to these quantities will depend on how well our simulated sequence actually approximates $p(\theta \mid y)$.