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EEEVe ogend:

Today's lecture

@ Understand Metropolis-Hastings

o Apply Metropolis-Hastings in Bayesian inference to generate samples
from the posterior pdf.
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Markov Chain Monte Carlo (MCMC)

o Recall, Monte Carlo integration approximates integrals of various
functions h(x)

= / W) f(x) de = B, (X)), X~ f

by directly sampling iid samples from the pdf f or from the posterior
pdf in Bayesian inference.

o Let X,,..., X, iid~ f , the Monte Carlo estimator of I is given by

N
I= N;h(Xi).
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Markov Chain Monte Carlo (MCMC)

o Question: But what if we cannot sample directly from f7?
- f is not analytically tractable.
- Then, simple Monte Carlo integration cannot be used.

o In Bayesian inference, if we use a non-conjugate prior, then the
posterior distribution may not be a well-known distribution.
- our prior beliefs may not be captured using a conjugate prior
- conjugate prior is unavailable for complicated problems

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



o Let x = (z4,...,2,) lID from N(u,o?), with p known and o2
unknown.

o We showed that a gamma(a, 3) prior for 7 = 1/0? is conjugate.

o But what if a gamma(«, 3) does not adequately represent our prior
beliefs?
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.Iotivating example

o Instead, we assume that our prior beliefs are represented by the
lognormal(f, v*) distribution with pdf

1 log T — 0)?
p(r) = ——exp{ - BT 2O

0
TUV 2T }, =%

where 6 and v? are known.

@ What is the posterior density of 7 under the lognormal prior and
normal likelihood? What is the posterior mean of 77
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MCMC can help when f is not analytically tractable

o Markov Chain Monte Carlo (MCMC) is a set of methods that can
generate a sample with pdf f without having to sample from f
directly.

@ Thus, MCMC can be used to generate samples from complicated
probability distributions.

o At the price, however, of yielding dependent observations that are
approximately from f.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Markov Chain Monte Carlo (MCMC)

o The general idea of MCMC methods is to construct a sequence of
RV X,, X, ...,, called Markov chain, which (hopefully) converges to
the distribution of interest f.

o However, X, X, ..., is NOT independent any more.

o But it can still be used to estimate means, E,;[h(X)], because there
is a WLLN for Markov chains.

o Under certain conditions,

.1 & P
I= N;h(Xi) S B WMX)) =1, as N — oc.
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Markov chains

What is a Markov Chain?

o Definition (Markov Chain). A Markov chain is a sequence
X1, Xs,... of random variables such that the probability distribution
of X; (pmf or pdf) only depends on the previous value X;_;

P(Xi \ X17X2»~~-X172~,Xi71) :P(Xi \ Xz'fl)-

@ The process depends on the past only through the present.
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'xample: Random walk

o As an example of a Markov chain is the random walk starting at
X, =1
@ Suppose X1 =1, and for i > 1

P(X;=X;,_1+1)=1/2,
P(X; = Xi 1 —1) = 1/2.

@ So you flip a coin move +1 steps if heads, move -1 steps if tails.

o At step i of this Markov chain, X;_; is either increased or decreased

1
by 1 with probability 3
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Metropolis-Hastings algorithm

o The Metropolis-Hastings algorithm is a type of MCMC that works as
follows.

o Let ¢(y|z) be a conditional density that we know how to sample
from.

@ ¢(y|z) is called the proposal distribution.

@ The Metropolis-Hastings algorithm creates a Markov Chain
(dependent observations) X7, Xs,... as follows.
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./Ietropolis—Hastings algorithm

Choose X, arbitrarily. Suppose we have generated X,,..., X,. To
generate X, do the following:

@ Generate a proposal or candidate random value Y ~ ¢(y|X;).
@ Evaluate r = r(X,,Y) where

~

(y) q(z|y)
ErTE.

r(z,y) = min {

~
~—

@ Generate U ~U(0,1). f U < r, set X,,, =Y, otherwise set
X=X,
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-opolis algorithm terminology

@ ¢ is the proposal distribution: we propose new rv Y using the
conditional distribution ¢(- | X;) that depends on X, (not on the
past).

@ MH accepts Y with probability

r=r(X,Y)= min{

called the acceptance probability.
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Metropolis algorithm terminology

o f is sometimes called the target distribution: this is what we are
aiming for, i.e. we want to generate a sample with pdf f.

o In Bayesian inference, f would be the posterior distribution p(6 | y),
and we want a sample of 6 values from this posterior distribution.
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-sing events in computer code

Remarks:
@ In general, to implement a random event that happens with
probability 7:
o Generate u ~ Uniform(0, 1);
o Event happens if u <.

o If U is a random variable, with U ~ Uniform(0, 1), then U has cdf
F(r)=rso P(U<r)=r.
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-polis-Hastings algorithm

Remarks:

@ A common choice for g(y|x) is N(x,b*) for some b > 0.

o This means that the proposal Y is a drawn from normal centered at
the current value.

o By symmetry, q(y|z) = q(z|y)

~

(y)’l}.

r(z,y) = min{ @)

~
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Metropolis-Hastings algorithm

Remarks:
@ In the algorithm, f only appears in acceptance probability
. ) }
r(X;,Y)=min< 1, .
ty) =min {1, 7%

@ The acceptance probability does not depend on the
normalisation constant, i.e. if f(z) = cg(z), where ¢ > 0 doesn't
depend on z, then

r(X,,Y) = min {1, gg((;;)) } .

@ So we only need to know f up to a normalisation constant. Useful
for Bayesian inference!
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Output of the Metropolis-Hastings algorithm

@ The Metropolis-Hastings algorithm generates a dependent sequence
of observations X1, Xo,....

@ Since our procedure for generating X, ,, depends only on X, the

conditional distribution of X, , given X,,..., X, depends only on
X,.
@ Hence, the sequence X1, X5, ... is a Markov chain.
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Output of the Metropolis-Hastings algorithm

@ The chain X7, X5, ... has the property that:
if Xi—l ~ f, then Xz ~ f

o f is the equilibrium distribution or stationary of the chain.

o However, we don't start with X; ~ f (because if we could, we
wouldn’t need this algorithm).

o But for large enough 4, if some technical conditions are met, then
each X; ~ f approximately.
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Output of the Metropolis-Hastings algorithm

@ In practice, we only generate X7, X5,..., X for some large N.

@ Under some conditions, the empirical distribution of X1, Xs,..., Xy
approximates f well if N is large.

@ Hence, we can approximate the integral I = [ h(x)f(x) dz using the
approximated X1, Xo,..., Xy, thatis

1 N
NZh(X,;), X1,Xs,..., Xy ~ f (approximately),

i=1

and X1, Xo,..., Xy generated by MH.
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Example: Metropolis-Hastings algorithm

o The Cauchy distribution has density

1
@ Our goal is to simulate a Markov chain whose stationary distribution
is f.
o Take ¢q(y|z) to be N(z,b*) for some b > 0.
o Then,
(,9) = min {7571}
= min

r x? y 1 + yz )

o Let r =7(X,,Y). Generate U ~ U(0,1). f U <7, set X,,, =Y,

otherwise set X,,, = X,.
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Example: Metropolis-Hastings algorithm

@ Figure below shows the chains of length N = 1000 using b =1
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Example: Metropolis-Hastings algorithm

o Figure: Histogram of chains and the plot of the Cauchy density (red)
o The distribution of chain converges to the desired Cauchy
distribution.

empirical distribution of the chain
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Relevance to Bayesian inference

o Let f be the posterior pdf, p(6 | y): this is the distribution we want
to sample from.

o Let q(1|0,) be a pdf for the proposal 1) which is symmetric in ¢ and
0, e.g., normal N(6,,b%).

o The algorithm constructs a Markov chain 61,65, ..., where the 6;
are continuous rvs (in our applications).
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Relevance to Bayesian inference

@ q is called the proposal distribution: it is used to generate the next
possible point in the Markov chain.

@ ¢ is often taken as a normal distribution centred on the current point
¥; ~ N(6;,b%), for some b > 0.

@ The normal pdf is symmetric in 6 and 1, as required by the
algorithm

R ) N ) &
e W —e W g0

q( | 0) =
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-ance to Bayesian inference

The algorithm constructs a Markov chain 61,605, ... as follows:
o Start with arbitrary 6;.
o For each i > 1, generate 1; from distribution ¢(¢ | 6;).

)

o Let

o Set

0.0 1 with probability
e 0; with probability 1 —r
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Relevance to Bayesian inference

o In Bayesian inference, the posterior density is

p(0 | y) < p(0) p(y | 0)
o It's difficult to find the normalizing constant
[ p®)p(w 10) do
@ We don't need to find this, we just put g(8) = p(0) p(y | 8), use g in

the algorithm (where we have f), and we will get an approximate
sample from p(é | y).

@ The Markov chain 61,05, ... is this sample.
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Metropolis algorithm for Bayesian inference

Define g(0) = p(9) p(y | 8), the non-normalized posterior density.
Generate a Markov chain 61,65, ... as follows:

@ Choose some b > 0.
o Start with 61, where g(6;) > 0.

o For each ¢ > 1:
o Generate 1) ~ N(0;,b?).

o Let
o)

o Set

Ot — 1 with probability r
T 0; with probability 1 —r
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Working on the log scale

o We usually do the computations using the log of the posterior
density.

o The likelihood is typically a product of many terms.

p(y|0) = Hp(yi | 6)

@ Due to finite accuracy of computers, if we multiply these together
for a large dataset, the result is inaccurate.

o So calculate

log (p(y | 0)) Zlog (p(yi | 9))

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



.Jsing the log scale

Define £(6) = log (p(6) p(y | 0)) = log (p(#)) + log (p(y | 0)),
the log of the posterior density (up to a constant).

©

©

To work on the log scale, the part of the algorithm with the
acceptance probability changes.

o Define

6 = min (0, L(¢)) — L(6;-1))

©

Generate u ~ Uniform(0, 1)
Set

©

o {¢ if log(u) < 6

0;,_1 otherwise
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-<ample with known variance

o Y,,...,Y, iid from N(0,0?) where ¢* is known.
0 6~ N(u,7?) with 72 known,

@ Apply the Metropolis-Hastings algorithm to simulate from the
posterior p(0|y,,...,y,) after observing Y =y
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Metropolis-Hastings algorithm for Bayesian inference

@ Metropolis-Hastings algorithm generates a dependent sequence
0W, ..., of 0 values.

o Under mild conditions, the empirical distribution of 8%, i =1,2,...
will approximate well the posterior.

o We can view @, 4 =1,2,... as a sample from the posterior p(f]y).

@ Hence, we can approximate posterior means, quantiles and other
posterior quantities of interest using {0, ..., 0"} for large N.

@ However, our approximation to these quantities will depend on how
well our simulated sequence actually approximates p(6 | y).
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