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So by using the HGLT we cannot be sure of the non-linear status of the fixed points at (1,0)
and (—1,0). Fortunately we can find integral curves for this system if we reconfigure the system

equations as

528 _ = (5.16)
¥ X—%
from which we get, by separating variables,
g o8 .3
B
V() = =5 g constant (5.17)

i.e. the quantity V is conserved by the system which means integral curves of the system are
confined to the level curves of V. Of course, V. = constant curves are equivalent to contour lines
or level curves (i.e z = constant of the surface z = V (x,y) in 3-dimensional xyz-space.

39

| P
Figure 21: (a) The phase portrait for the system ollows the level curves of the first integral V.
(b) Note the "Mathematica’ picture of the surface z = V(x,y) does not capture the saddle point at

the origin and its unstable/stable manifolds, but it does show up the non-linear centres at (£1,0)
well.
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5.4 Conservative and gradient systems Wki0o =

A real-valued function H : R? — R is a constant of the motion or first integral of the system
x = f(x), x € R?, and f : R> — R? if H is constant for any solution curve, i.e. H(x(t)) =
H(x(0)) for all t € R. The "trivial constant" of the motion that H(x,y) = C, a constant,
on an open set in R? is not allowed as it offers no information on the nature of the solution

curves. H (,‘(ﬂ‘.‘(b)) - H (1(0),‘](0’)

42

For H(x,y) to be a constant of the motion, we require

d

dt( ( !-_U'\ ;(x(e)’j&b

x(t) =0,

which implies
oH & oH
a— i+ =—y=0.

(H () = ”



5.4.1 Conservative systems wx (D) .a

Newton'’s second law of motion, (II), states that the force applied to an object is propor-
tional to its acceleration, with the constant of proportionality being the mass of the object.

This layw=easrbe written as an ODE in the form K
x :(i%_,(! ) mi = F(x) odas" ) | varal@

where “x-is tire-position coordinate, m is the mass, and F(x) is the force applied at the
position x. Converting this second order ODE into a first order equation, we obtain

. 1
x=y y= EF(x).(
Define the function E : R — R by / KE
1
E(v,y) = ymf +V(x), (522)

where N /P( y ¢ e = (1((’),](‘»

FH(EG(D) = St 520 = ~Fy+ myy = y(~F() +m) =0,

by Newton II.

The function E given in 5.22, the energy, is a constant of the motion for Newton II.
Energy is conserved in this system - i.e. it is a conservative system. The energy E is seen
as being comprised of two components: %myz is the kinetic energy; V(x) is the potential

energ Y




Theorem 5.3. Let x = f(x), x € R?, be a conservative system, with constant of motion H, then
the system has no attracting points. ta. wo powks Wl eve Mﬁwxpm\'ts\\ 9
stable — loca“3 oot v .
Proof. If there were to exist a neighbourhood U of a fixed point X* of the system for which
every solution x(¢) with xo € U satisfied x(t) — x* as ¢ — oo, then by continuity of H,
H(x(t)) — H(x*), as t — oo.

Since H(x(t)) is constant as ¢ varies, it follows that H(x(0)) = H(x*) on the neighbour-
hood U of x*, i.e. H(x) = H(x*) for all x € U and is therefore a ttivial constant of the
motion. h e

. =0
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Example 5.8. Consider a Newton II system with potential energy V(x) = —3x? + tx*. The
system we obtain using the equation 5.22 is
1%
5 . 3
— -y — =——" 5.23
=y y=x-# (=-5), 523)

which we considered earlier in equation 5.14. We have chosen m = 1 as its numerical value does
not change the qualitative behaviour of the system. The system has fixed points at (0,0) - a saddle,
and (+1,0), are both centres. See figure 21,



5.4.2 Gradient systems w0, \d

Consider a differentiable function F : R> — R. The gradient system with potential function
Fis

x = —VF(x), (5.24)
where VF(x) = (g—i (x), g—; (x)) . The fixed points of the gradient system are precisely those
points for which VF(x) = 0, the so called critical points of F.

= =-0F
P, &

WA, w4
Figure 24: The phase portraits of (a) the gradient system 5.24 and (b) the corresponding conserva-

tive system 5.23 with the same potential function E(x,y) = Imy? + 1x* — 1x2,

Theorem 5.4. A gradient system has no periodic orbits of positive period T > 0.

Proof. If such a periodic orbit x(t) for 0 < t < T existed for the system 5.24, then the
change in the value AF of F would be zero since F(x(0)) = F(x(T)), given x(0) = x(T).

But
_(Tdr, T ax(t) .. T 2

which provides a contradiction.
We should note that this is the very opposite (or, perhaps, orthogonal!) to the behaviour
of a conservative system.




We should note that this is the very opposite (or, perhaps, orthogonal!) to the behaviour

of a conservative system. Wk lo \ \
Example 5.9. Prove that a conservative system with energy E(x,y) = %my2 + V(x), and a gra-
dient system x = —V E(x), with the same energy E have orthogonal trajectories in their respective
phase portraits, i.e. the vectors fields of the two systems are mutually orthogonal (hint: expand %’tﬁ
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Figure 25: The conservative (blue) and gradient (red) systems with the same potential, E - illus-
trated separately in figure[24]- are superimposed to show the mutual orthogonality of the flows (the
dot product of the vector fields at every point of R? is zero).



0.
and interpret the expression as a dot product of vectors). Note that the gradient system is now seen

in the context of the "total” potential enerqy being E(x,y), not just the potential enerqy V (x,y) of
the mixed energy E(x,y) in equation[5.22]

Proof. Given the potential energy function V(x), the total energy function for the corresponding
conservative system is

1
E(x,y) = gmy* + V(x),

V'(x) New o an f\gﬁv

m

cf. with system equations

6 =1 yo=—
The corresponding gradient system for the energy function E(x,y) has the form

It follows that the dot product of the two vector fields is o::i ON!LQS‘ ds

V'(x)
m

SRS c.ic +Yc-yc = (—V'(x)).y + (—my).(— ) =0. (5.25)
Therefore, the conservative and gradient vector fields are orthogonal, see figure[25] This means that
gradient systems follow the lines of maximum slope which are always perpendicular to level curves,
a good direction to avoid when walking down a mountain!



We should note that this is the very opposite (or, perhaps, orthogonal!) to the behaviour
of a conservative system. W(‘O(}

Example 5.9. Prove that a conservative system with energy E(x,y) = %my2 + V(x), and a gra-
dient system x = —V E(x), with the same energy E have orthogonal trajectories in their respective
phase portraits, i.e. the vectors fields of the two systems are mutually orthogonal (hint: expand %}TE
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Figure 25: The conservative (blue) and gradient (red) systems with the same potential, E - illus-
trated separately in figure[24]- are superimposed to show the mutual orthogonality of the flows (the
dot product of the vector fields at every point of R? is zero).



Theorem 5.3. Let x = f(x), x € R?, be a conservative system, with constant of motion H, then

the system has no attracting points. ( WO M‘E\'\p*ﬁ\ca\ \ i S2tule -P N<ed PB

Proof. If there were to exist a neighbourhood U of a fixed point x* of the system for which
every solution x(¢) with xo € U satisfied x(t) — x* as ¢ — oo, then by continuity of H,
H(x(t)) — H(x*), as t — oo.

Since H(x(t)) is constant as ¢ varies, it follows that H(x(0)) = H(x*) on the neighbour-
hood U of x*, i.e. H(x) = H(x*) for all x € U and is therefore a trivial constant of the
motion.

WKWy
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Example 5.8. Consider a Newton II system with potential energy V(x) = —3x? + tx*. The
system we obtain using the equation 5.22 is
oV
5 . 3
— = x— =—— 5.23
=y y=x-# (=-5), (523)

which we considered earlier in equation 5.14. We have chosen m = 1 as its numerical value does
not change the qualitative behaviour of the system. The system has fixed points at (0,0) - a saddle,
and (+1,0), are both centres. See figure 21,
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Question 2 [35 marks]. Two dimensional systems

(a) For each of the following systems, find the fixed points and classify them, sketch the
null-clines and the vector field, and suggest a plausible phase portrait.
@

X

Xx=x+y, y=1l—e?

(ii)
JE:xZ—y, y=x-y.

(b) Consider the system
=y, g=—x

(i) Show that the quantity E(x,y) = x* +y? is conserved over time.

(ii) Show that the origin is not an isolated fixed point.
(iii) Sketch the phase portrait.

(c) A certain two dimensional system is known to have three fixed points, one saddle and
two unstable nodes. Sketch a plausible phase portrait which has, as its only periodic
orbits, the three fixed points described and a single stable limit cycle.

(d) Find a dynamical system in polar coordinates in the form # = f(r,0), § = g(r,8), where
£, 8 are suitably chosen functions, which exhibits a planar phase portrait with an
unstable spiral focus at the origin surrounded by two circular limit cycles given by
r = 1 (stable), and r = 2 (unstable), with anti-clockwise flow on the inner limit cycle,
and clockwise flow on the outer limit cycle.

[6]

(6]

[4]
[4]
[3]

[6]

[6]

= 96% @m)

Done
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Figure 26: (a) The phase portrait of the system 5.27 , and (b) the corresponding surface plot, S,

the potential F(x,y)
but the perpendicular directions of steepest slope.
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Example 5.10. Consider the following systems:

()

(i)

The system

X = sin(y); y = xcos(y) (5.27)
is a gradient system with potential function F(x,y) = —xsin(y). So the system has no
periodic orbits, see figure 26.

The system obtained from the ODE X + %° 4+ x = 0 has no periodic solutions. The corre-
sponding system is & =y, y = —x — y>. If the system is of gradient type, thenit could be
concluded that there are no periodic orbits. This is not a gradient system: if a potential F(x,y)
existed, then 9E (x) = —y and 3—§(x) = x + y5, but then we would have

o [oF o [OoF
a(@)i@(@)’ (5.28)

which is not true for this system. The condition 5.28 is, in fact, a necessary and sufficient
condition for the existence of the potential function F. Hence, we need to show the existence
of non-periodic solutions in a different way. Note that the linearised system at the origin is
X =y; y = —x, which has energy E(x,y) = (x + y?) which invites the possibility of an
investigation using polar coordinates. Calculatzng G we obtain 4 dt =xx+yy=-y*<0.

It follows that AE = fo Edt = 0 only if y(t) = 0 along an orbit. But,
y(t) =0 = x(t) =0and y(t) =0,

which means that the orbit is a fixed point and is not a period orbit.
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(b) Consider the system of differential equations X=09, Y %3 of " 4 é

=x(1-32-y") —y(1+x), §=y(1 -3 - ) +3x(1 + ). 4)

(i) Compute the fixed points of the system (4). For each fixed point determine the
stability using linear stability analysis. [8]
(ii) Consider the quantity L = (1 —3x? — y*). Show that 4 < 0. When does 4 = 02  [6]
(iii) Using the results of part (b)(ii), or otherwise, show that the system (4) has a unique
limit cycle. Is the limit cycle stable or unstable? Give reasons for your answer. [6]

(iv) Using the results of part (b)(i-iii), or otherwise, sketch the phase portrait of the

system (4). : [4]



NkIL. 6
z': %("3;‘-'9") -g(‘“x) ,‘:a :1('-311;51)4-31{‘4»3)

Fhe fl:O, &:0 ?x‘x-r 55 = Sx (l -3 )»31(( -3 1

l~3)¢ :"‘) 4-7(‘
{@”ﬂ(' 31-11)‘0 /K(
3'4y'0 D x=y=0 1=3x"-4?

Bu‘f x:g:o aSo }M\;\ms A-&,@"-&"‘:o ad :‘(l‘rx\-o

%(Hx) =0

Bk 2=-\ dses b sakify S—3ac™- "
47mo Yany .
n\"“a' ‘,\"64 PY =0,
Aed

Now sl | = (1-3x"¢") = E' jsay, 4 E=13xyg"
Thea U =9 - 2€(-6xx -244)
- AE (-bt E +¢ u-u) -LE- l,/a,{'l/ad)

= ’AE 32 rog®



e

L =
Se L<O Mcw‘;\‘

w3

b BT (35" y’) =-LE(-E)

&J Wwewe E =0 ov @xl‘“iq—) =0

Nble - 33}(\{. ) @@;\&-—03

e
& 5

\:,<O a s olber MUam C’x,«d):o ‘
and (n,4) sahzhyonrp 3ltcy’ =4 (e BE=0)

NaTe/ bi\ﬂ"—.d \é QA e)ﬁp@z M{\Vd\.\d& 5xl+t&9\<l

E= |

E<<co

L

E<0 »
o Stable lwd
cj e

swside 3t 4= >

.L:<o/—(%u Dce<l

L.,)O/"FN ‘<E_ (’\é\xa:ﬂ.\aw)o{j.‘
E<D
E=1(y)=0 N c 7

E=0 :004) ¢ elgse
E<o “(o9) -



WEE K (2 %[x) ~
- Lk e
- ot~ bt &N . ¢
-~ b - Lu:v" @E - =20 |
Vouw ds B Belalor x 3 fc/«(xz") + 2 =0
e ——

NV —x,zva ,,3:,7(,)“&(11“)

Nole f} = 1 4'3“ = -'Auq(x"_ ‘). e
. f':@ Y ’a\x%cu";l) )
(e

éf-‘ ~\ - )AMO%G(IQA‘)



2
Example 5.12. Van der Pol Oscillator This is a celebrated system discovered by the Dutch en-
gineer in 1920. It modelled fluctuations and has been widely used in physics, engineering and
biological modelling. Called the Van der Pol Oscillator, it has the form of a second order ODE in
one real variable x as:
E+p(?-1i+x=0,

where y € R is a parameter. The corresponding first order system in 2 variables,

x=y, y=—x—u(x>—1)y,

has a fixed point at the origin (x,y) = (0,0). The Jacobian matrix is

prix) = | % ).

Bookmark Rotate

where £(x) = (y, —x — u(x? — 1)y), with eigenvalues A = (u + /(4> —4))/2.

Therefore, by HGLT, we have spirals for |u| < 2 which are unstable for y > 0 and stable for
u < 0. It can also be shown that orbits with initial values at sufficiently large radial distance r
spiral inwards which are then met by orbits spiralling out from the origin. The resulting collision
of competing orbits is resolved by the existence of a stable limit cycle, see figure 28.
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5.6.1 Poincaré-Bendixson Theorem

Definition 5.9. For a planar system x = f(x), a point y is an element of the w-limit set of the
orbit x = x(t) with x(0) = xo if there exists a sequence t, with im, ety = co such that
lim x(t,) —y as n — oo. For the a-limit set, lim, o ty = 00 is replaced by limy sc0 ty = —o0.

We consider the possible w-limit sets w = w(xp), where xg is the initial condition de-
termining the orbit.

Example 5.14. Consider the w-limit of the following systems:

(i) # = —r, § = 1. All orbits converge to the origin which is a fixed point, i.e. ¥ = —r, 8 = 1.
All orbits converge to the origin which is a fixed point, i.e. w(xo) = {(0,0)}.

(ii) # = r(1 —r), 8 = 1. All orbits, apart from the origin, approach the unit circle, so there are
two possible limit sets i.e. w(0) = {(0,0)} and w(xp) = {(x,y)|x> +y? = 1} for xg # 0.

(iii) + = r(1—r), 0 = 1 — cos(0) + (r — 1) There are just two fixed points x; = (0,0) and
x5 = (1,0) All orbits on the unit circle T approach x5, so w(T') = {x}}. A more delicate
investigation is needed to see that x} is a saddle node fixed point with a stable eigen-direction
on the x-axis, and a saddle node eigen-direction tangent to the circle. We are able to conclude
that w(xg) = x4, Vxo € R?\ {x})}, see figure 30,

The following theorem describes the general case.
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The following theorem describes the general case.
Theorem 5.6. (Poincaré-Bendixson) Suppose that x = £(x) is a planar system with a finite
number of fixed points. If the positive orbit x; = {x(t,xo); t > 0}, where x(0,xp) = Xo, is
bounded, then one of the following is true.

The w-limit set w(xo) is a
(a) single point x*, which is a fixed point, and x(t,xo) — x* as t — oo.

(b) periodic orbit T and either x§ =T, or x; spirals towards T on one side of T'

(c) union of fixed points and orbits whose a— and w— limit sets are fixed points. Such orbits are
known as heteroclinic and homoclinic orbits, c.f. figure 29.
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Figure 29: Some examples of the « and w-limit sets in phase portraits for case (c) of the Poincaré-

Bendixson Theorem. The closed orbits, illustrated by the red curves, consist of a finite set of hetero-
clinic or homoclinic orbits (these are orbits which connect saddle points).
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Figure 29: Some examples of the « and w-limit sets in phase portraits for case (c) of the Poincaré-
Bendixson Theorem. The closed orbits, illustrated by the red curves, consist of a finite set of hetero-
clinic or homoclinic orbits (these are orbits which connect saddle points).
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