PS 7 QR:
The general solutions of Laplace equation in polar coodinate is

$$
U(r, \theta)=C_{0}+D_{0} \ln r+\sum_{m=1}^{\infty}\left(C_{m} r^{m}+\frac{D_{m}}{r_{m}}\right)\left(A_{m} \cos m \theta+B_{m} \sin m \theta\right)
$$

plug in the 2 boundary conditions, we get by "observation" frat
the constant term has to agree, ie.

$$
\begin{aligned}
& \left\{\begin{array}{l}
1=C_{0}+D_{0} \cdot \ln 1=C_{0} \\
3=c_{0}+D_{0} \cdot \ln e=c_{0}+D_{0}
\end{array}\right. \\
& \text { So } \Rightarrow C_{0}=1 \cdot D_{0}=2
\end{aligned}
$$

Next, hearse there are only $\sin \theta$ terms on the boundoy data.
using the fact that $\sin (m \theta) \cos (n \theta)$ are independent, we must have.
$A_{m}=0$ for all m
$B_{m}=0$ for all m accept for $m=1$
Moreover, the coffers before $\sin \theta$ need to watch. so

$$
\left\{\begin{array}{l}
e=\left(C_{1} \cdot 1+D_{1} \cdot 1\right) B_{1} \\
1=\left(c_{1} \cdot e+\frac{D_{1}}{e}\right) B_{1}
\end{array}\right.
$$

This equation has more unknowns then restriction, we can set $B_{1}=1$, and get

$$
\left\{\begin{array}{l}
e=C_{1}+D_{1} \\
1=e \cdot C_{1}+\frac{1}{e} \cdot D_{1}
\end{array}\right.
$$

Solve it, we get $\left\{\begin{array}{l}C_{1}=o \\ D_{1}=e\end{array}\right.$
So the solution is

$$
u(r, \theta)=1+2 \ln r+\frac{e}{r} \sin \theta
$$

