
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 9: Numerical differentiation 
and application to solving the 
heat equation
Finite differencing, pseudospectral methods and their application 
to the heat equation



Plan for today
1. Motivation - solution of the heat equation


2. Revision of last week’s interpolation content


3. Numerical differentiation - finite differencing


4. Numerical differentiation - pseudospectral methods


5. Application - solution of the heat equation 



• The heat equation 
 

                 

• Tell me your initial temperature profile, 
and I can tell you how it changes 
over time


• Cannot usually just write down T = f(x,t) 
except in very simple cases

∂T
∂t

= α
∂2T
∂x2

Motivation: solving the heat equation

Temperature T

Space x

How does T change over time?




• The heat equation 
 

                 

• Tell me your initial temperature profile, 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over time


• Cannot usually just write down T = f(x,t) 
except in very simple cases

∂T
∂t

= α
∂2T
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Motivation: solving the heat equation

Temperature T

Space x

The temperature profile spreads out - the value decreases 
at a maximum where the second derivative is negative



• The heat equation 
 

                 

• How to find the spatial  
derivative of T if it is represented 
as a series of points?

∂T
∂t

= α
∂2T
∂x2

Motivation: solving the heat equation

Temperature T

Space x



Plan for today
1. Motivation - solution of the heat equation


2. Revision of last week’s interpolation content


3. Numerical differentiation - finite differencing


4. Numerical differentiation - pseudospectral methods


5. Application - solution of the heat equation 



What does the numerator and denominator 
achieve here?


Lagrange polynomials use colocation at points

• Degree n Lagrange polynomials agree exactly with a function f(x) at n+1 distinct points, 
 


• First we construct the basis functions 
 




• Then their weights are the values of the functions at each point, so that the Lagrange 
interpolant is: 
 

                                                   

(x0, f(x0)), (x1, f(x1)) . . . (xn+1, f(xn+1))

Lk(x) =
n

∏
i=0,i≠k

(x − xi)
(xk − xi)

Pn(x) =
n

∑
k=0

Lk(x) f(xk)



• Degree n Lagrange polynomials agree exactly with a function f(x) at n+1 distinct points, 
 


• First we construct the basis functions 
 




• Then their weights are the values of the functions at each point, so that the Lagrange 
interpolant is: 
 

                                                   

(x0, f(x0)), (x1, f(x1)) . . . (xn+1, f(xn+1))

Lk(x) =
n

∏
i=0,i≠k

(x − xi)
(xk − xi)

Pn(x) =
n

∑
k=0

Lk(x) f(xk)

Lagrange polynomials use colocation at points

Numerator - functions to be zero at all of the 
points other than  - denominator - function 
is normalised so it has value 1 at 

xk
xk



• Can use a python function  
scipy.interpolate.lagrange() to construct 
using higher number of points

Is a higher number of 
points always better?


Lagrange polynomials use colocation at points



• More points improved the fit at the interior,  
but with regular intervals it tends to lead  
to spurious oscillations at the edges of  
the interval 
 
-> “Runge’s phenomenon”

Lagrange polynomials use colocation at points

How can we do better?




1. We could try to divide the interval up 
into smaller sections and fit lower 
order Lagrange polynomials to each 
part in turn - this is a composite 
colocation method. 
 
 
This approach gives rise to the idea 
of finite differencing for finding 
derivatives. 

Strategy 1: composite colocation



Strategy 2 - Chebyshev Polynomials
2. If we locate the points not evenly, but 

at the zeros of the Chebyshev 
polynomials, we get an exponentially 
convergent fit and eliminate Runge’s 
phenomenon 
 
 
This approach gives rise to the idea 
of pseudospectral methods for 
finding derivatives. 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1. Motivation - solution of the heat equation
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3. Numerical differentiation - finite differencing
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5. Application - solution of the heat equation 



Numerical differentiation - finite differencing

xΔxΔx

t

g(x) g(x + Δx)g(x − Δx)

How do I find the first derivative at the 
central point?




Numerical differentiation - finite differencing

xΔx

∂g
∂x
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g(x + Δx) − g(x − Δx)

2Δx
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Numerical differentiation - finite differencing

xΔxΔx

t

g(x) g(x + Δx)g(x − Δx)

How do I find the second derivative at 
the central point?




Numerical differentiation - finite differencing

xΔx

∂2g
∂x2

≈
g(x + Δx) − g(x)

Δx − g(x) − g(x − Δx)
Δx

Δx

Δx

t

g(x) g(x + Δx)g(x − Δx)

How do I find the second derivative at 
the central point?


≈
g(x + Δx) − 2g(x) + g(x − Δx)

Δx2



We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

dT/dx 

-1 0 1
First derivative stencil

∂g
∂x

≈
g(x + Δx) − g(x − Δx)

2Δx

 = 0.5Δx



We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

dT/dx 1

-1 0 1
First derivative stencil

∂g
∂x

≈
g(x + Δx) − g(x − Δx)

2Δx



We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

dT/dx 1

-1 0 1
First derivative stencil

∂g
∂x

≈
g(x + Δx) − g(x − Δx)

2Δx



We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

dT/dx 3 1

-1 0 1
First derivative stencil

∂g
∂x

≈
g(x + Δx) − g(x − Δx)

2Δx



We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

dT/dx 3 1 -2

-1 0 1



We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

dT/dx 3 1 -2 -2

-1 0 1

What about the end points?




We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

dT/dx 3 1 -2 -2 -2

-2 2Use one sided stencil - doesn’t 
have to be centralised



We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

dT/dx 3 1 -2 -2 0

OR use a boundary condition -  
some knowledge about the function  
- e.g. maybe its derivative goes to zero here



We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

d2T/dx2 

Second derivative stencil

 = 0.5Δx

≈
g(x + Δx) − 2g(x) + g(x − Δx)

Δx2

What is the second derivative stencil?




We can see finite differencing as the convolution of a stencil with the 
current state vector.

Finite differencing - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

d2T/dx2 -12

4 -8 4
Second derivative stencil

 = 0.5Δx

≈
g(x + Δx) − 2g(x) + g(x − Δx)

Δx2



We can also represent this convolution in matrix form: 

Finite differencing - matrix representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

0

1

3

2

1

0

=

TMatrix DDT/dx =
2

3

1

-2

-2

-2

-2 2

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-2 2

All blank entries zero



Using the Lagrange polynomials helps us to have general method for 
constructing the stencils.


This is important to answer the questions: 

• What if I don’t have evenly spaced points?


• How do I know the order of accuracy of my method?


• How many points should I use? 

Finite differencing - relation to Lagrange polynomials



We fit a polynomial of order N-1 to the N points we want to use in the 
stencil.


Recall that the  order of the fit has an error  
related to the Nth derivative.


This function that fits all the points is just  
an order N polynomial, whose coefficients  
are combinations of the function values at  
each point and the points themselves e.g.  
for 3 points separated by a distance dx: 
 
T = (−f1(x − x2)(dx − x + x2) + 2f2(dx − x + x2)(dx + x − x2) + f3(x − x2)(dx + x − x2))/(2dx2)

Finite differencing - relation to Lagrange polynomials



We can take the derivative of this polynomial 





And evaluate it at x = x_2 

 

 
 

dT
dx

= (−dx f1/2 + dx f3/2 + xf1 − x2 f1 − 2xf2 + 2f2x2 + xf3 − x2 f3)/dx2 + O(dx2)

dT
dx

x=x2

=
( f3 − f1)

2dx
+ O(dx2)

Finite differencing - relation to Lagrange polynomials

Order of error is N-1, coming 
from the derivative of the error: 

Emax = max
f n+1(ζ)
(n + 1)!

n

∏
i=0

(x − xi)



This will give us a stencil for the function 
values to apply at x2


dT
dx

x=x2

=
( f3 − f1)

2dx
+ O(dx2)

0 1/(2 dx)

f1 f2 f3

Finite differencing - relation to Lagrange polynomials

−1/(2 dx)



The MIT finite difference 
calculator is a useful resource for 
working out the stencil for a 
general collection of equally 
spaced points, up to any 
derivative order.


For non equally spaced points 
thing get a lot more complicated, 
and may also depend on the 
position. 

Finite differencing - general number of points



Plan for today
1. Motivation - solution of the heat equation


2. Revision of last week’s interpolation content


3. Numerical differentiation - finite differencing


4. Numerical differentiation - pseudospectral methods


5. Application - solution of the heat equation 



We can apply the same Lagrange method to find the stencils 
for the Chebyshev polynomials used in the Pseudospectral 
method. 


The complication is that the order of the polynomial is now 
N-1 where N is the number of points. Now all the values of 
the function at every point are used in the stencil, not just the 
neighbouring ones, and the grid spacing is not equal so the 
factors don’t cancel nicely.

Numerical differentiation - pseudospectral method

3x2
3 + x2x1 3x1x3 + 2x2

1 2x2x1

f1 f2 f3

Made up complicated looking stencil



Now the stencil includes all the points in the grid, and is a bit more 
complicated to work out, but the principle is the same!

Pseudospectral method - stencil representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0



The simplest thing is to represent the derivatives in matrix form: 

Pseudospectral methods - matrix representation

Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

0

1

3

2

1

0

=

TMatrix DDT/dx =
2

3

1

-2

-2

-2



In the tutorial (and the coursework) this matrix will be provided to you, but 
you need to know how to use it.

Pseudospectral methods - matrix representation



The main thing to remember is that the matrix is specific to the number of 
points used. It also needs to be rescaled if the interval is not [-1,1].

Pseudospectral methods - matrix representation



Plan for today
1. Motivation - solution of the heat equation


2. Revision of last week’s interpolation content


3. Numerical differentiation - finite differencing


4. Numerical differentiation - pseudospectral methods


5. Application - solution of the heat equation 



• In the tutorial you will solve the heat equation using solve_ivp() 
 

  
∂T
∂t

= α
∂2T
∂x2

Application: solving the heat equation

What is going 
on here?



Here we are using the matrix representation to calculate the time derivative 
Position x
 0 0.5 1 1.5 2 2.5

Temperature T 0 1 3 2 1 0

0

1

3

2

1

0

=

TMatrix D^2D2Tdx2 =
2

3

1

-2

-2

-2

X X

X X X

X X X

X X X

X X X

X X

Application: solving the heat equation
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