PS 3 Q9(3):
The principal part is

$$
\begin{aligned}
& a u_{x x}+2 b u_{x y}+c u_{y y} \\
= & u_{x y}+2 u_{x y}+17 u_{y y}
\end{aligned}
$$

with $a=1, b=1, c=17$.
use the charge of variables (week 3noter 3.3)

$$
\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=-\frac{b}{a} x+y=-x+y
\end{array}\right.
$$

Using this charge of variables

$$
\begin{aligned}
& U_{x y}+2 U_{x y}+17 U_{y y} \\
= & a\left(U_{x^{\prime} x^{\prime}}+\left(\frac{a c-b^{2}}{a^{2}}\right) U_{y^{\prime} y^{\prime}}\right) \\
= & U_{x^{\prime} x^{\prime}}+\frac{1.17-1^{2}}{1} U_{y^{\prime} y^{\prime}} \\
= & U_{x^{\prime} x^{\prime}}+16 U_{y^{\prime} y^{\prime}}
\end{aligned}
$$

PS 4 Q2:
We compute

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) V(x, t)
$$

$$
\begin{aligned}
& =\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right)-\left[\frac{\partial}{\partial x} \cdot u(x, t)\right] \\
& \left.=\frac{\partial}{\partial x}\left[c \frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) U(x, t)\right] \\
& =\frac{\partial}{\partial x}\left[u_{t t}-c^{2} U_{x x}\right] \\
& =\frac{\partial}{\partial x} \cdot 0 \quad \leftarrow \quad u_{\text {because }} \\
& =0 \quad \text { satisfies } \\
& =0 \quad \text { wave equation }
\end{aligned}
$$

so V also satisfies wave equation.
PS 4 Q5:
The equation can be faetred as

$$
\left(\frac{\partial}{\partial x}-4 \frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial t}\right) u=0
$$

Denote by $\frac{\partial}{\partial x}+\frac{\partial}{\partial t} U=W$ we get 2 lIst order PDES

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x}-4 \frac{\partial}{\partial t} W=0 \tag{1}\\
\frac{\partial}{\partial x}+\frac{\partial}{\partial t} U=W
\end{array}\right.
$$

Equation (1) has cheraterstics $\frac{d t}{d x}=-4$

Namely $\quad t=-4 x+c$
So (1) becones an ODE along sack cherateristics

$$
\begin{aligned}
\frac{d}{d x} w(x, t(x)) & =W_{x}+\frac{d t}{d x} w_{t} \\
& =W_{x}-4 W_{t} \\
& =0
\end{aligned}
$$

Thus $w(x, t)=f(c)$
using that $c=4 x+t$, we get

$$
w(x, t)=f(4 x+t)
$$

Next, we solve (2), rankly

$$
\begin{equation*}
u_{x}+u_{t}=f(\& x+t) \tag{3}
\end{equation*}
$$

This equation has coraterstics $\frac{d t}{d x}=1$
Namely $\quad t=x+\tau$
Along such choroufaristics
(and using $t=x+\bar{c}$), we see
(3) becomes an ODE

$$
\begin{aligned}
& \frac{d}{d x} U(x, f(x))=f\left(4 x+x+\tau^{c}\right) \\
& \frac{d}{d x} d=f(5 x+\widetilde{c})
\end{aligned}
$$

Integrate it with respect to x, we get

$$
u=F(5 x+\tau)+G(\tilde{c})
$$

substituting back $\tau^{c}=t-x$, we get the several solutions:

$$
\begin{align*}
U(x, t) & =F(5 x+t-x)+\widetilde{G}(t-x) \\
& =F(4 x+t)+G(x-t) \tag{4}
\end{align*}
$$

for any F, G.
Next we determine F, G by initial conditions
First $U_{t}(x, t)=F^{\prime}(4 x+t)-G^{\prime}(x-t)$
plug in $t=0$ to (4) and (5), we get

$$
\begin{align*}
& x^{2}=u(x, 0)=F(4 x)+G(x) \tag{6}\\
& e^{x}=u_{t}(x, t)=F^{\prime}(4 x)-G^{\prime}(x) \tag{7}
\end{align*}
$$

Integrate (7) we get

$$
\begin{equation*}
e^{x}=\frac{1}{4} F(4 x)-G(x)+D \tag{8}
\end{equation*}
$$

using (6) and (8), we can solve the algebraic equations and set F, G.

$$
\frac{x^{2}+e^{x}-D}{\frac{5}{4}}=F(4 x)
$$

substituting $\frac{x}{4}$ for x, we get

$$
F(x)=\frac{4}{5}\left[\frac{x^{2}}{16}+e^{\frac{x}{4}}-D\right]
$$

and $G(x)=F(4 x)-x^{2}$

$$
\begin{aligned}
& =\frac{4}{5}\left(x^{2}+e^{x}-D\right)-x^{2} \\
& =-\frac{1}{5} x^{2}+\frac{4}{5} e^{x}-\frac{4}{5} D
\end{aligned}
$$

plug in $x=0$ in (6) we get.

$$
F(0)+G(0)=0
$$

Namely

$$
\begin{gathered}
\frac{4}{5}\left[0+e^{0}-D\right]-0+\frac{4}{5} e^{0}-\frac{4}{5} D=0 \\
\text { so } D=1
\end{gathered}
$$

Thus

$$
\begin{aligned}
& F(x)=\frac{4}{5}\left(\frac{x^{2}}{16}+e^{\frac{x}{4}}-1\right) \\
& G(x)=-\frac{1}{5} x^{2}+\frac{4}{5} e^{x}-\frac{4}{5}
\end{aligned}
$$

plied into the general solutions, get

$$
U(x, t)=\frac{4}{5}\left[\frac{(4 x+t)^{2}}{16}+e^{\frac{4 x+t}{4}}-1\right]-\frac{1}{5}(x-t)^{2}+\frac{4}{5} e^{x-t}-\frac{4}{5}
$$

PS Qq:
First the serial solution for ave equations we deduced in the lecture notes are

$$
u(x, t)=F(x+c t)+G(x-c t)
$$

for any F, G
Next we we the boundary corolitions to determine F, G.
when $x-c t=0$, Namely $t=\frac{x}{c}$, we have
(1) $x^{2}=\left.u\right|_{x-c t}=F(x+x)+G(x-x)=F(2 x) \in G(0)$ when $x+c t=0$, Naraly $t=-\frac{x}{c}$, we have
(2) $x^{4}=\left.u\right|_{x+c t}=F(x-x)+G(x+x)=F(0)+G(2 x)$
plugin $x=0$ in (1), we get
(3) $\quad F(0)+G(0)=0$.

Replace x by $\frac{x}{2}$ in (1), we get

$$
F(x)=\frac{x^{2}}{4}-G(0)
$$

replace x by $\frac{x}{2}$ in (2), we get

$$
G(x)=\frac{x^{4}}{16}-F(0)
$$

so the solution is

$$
\begin{aligned}
U(x, t) & =F(x+c t)+G(x-c(t) \\
& =\frac{\left(x+(t)^{2}\right.}{4}-G(0)+\frac{(x c t)^{4}}{16}-F(0)
\end{aligned}
$$

using (3), $F(0)+G(0)=0$,
So $\quad U(x, t)=\frac{(x+c t)^{2}}{4}+\frac{(x-c t)^{4}}{16}-(F(0)+G(0))$

$$
=\frac{(x+c t)^{2}}{4}+\frac{(x-c t)^{4}}{16}
$$

PS 5 Q 2:
First consider solutions with separated variables

$$
u(x, t)=X(x) T(t)
$$

plug into the equation gives

$$
\begin{align*}
& x \cdot \ddot{T}-c^{2} x^{\prime \prime} T=0 \\
& \frac{\ddot{T}}{C T^{2}}=\frac{x^{\prime \prime}}{X}=-\lambda \tag{A}
\end{align*}
$$

The and ideality in (*) together with the borolary conditions gives the ejenvalese problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\lambda x=0 \\
x^{\prime}(0)=0, x^{\prime}(\pi)=0
\end{array}\right.
$$

The several solutions for x are

$$
x(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x) .
$$

Ie's derivative is

$$
x^{\prime}(x)=-c_{1} \sqrt{\lambda} \sin (\sqrt{\lambda} x)+c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda} x)
$$

the first bondey condition gives

$$
0=x^{\prime}(0)=c_{2} \sqrt{\lambda} .
$$

This implies $C_{2}=0$ and $C_{1} \neq 0$.
The second corday condition then gives

$$
0=x^{\prime}(\pi)=-c_{1} \sqrt{\lambda} \sin (\sqrt{\lambda} \pi)
$$

Thus $\sqrt{\lambda} \pi=a \pi, \quad n=0,1,2, \ldots$
so eigenvalues are $\lambda_{n}=n^{2}, n=0,1,2 \ldots$
eigenfanefions are $x_{n}(x)=\cos (n x)$
For $n \geqslant 1$, knowing λ_{n}, we can solve

$$
\begin{gathered}
\frac{T^{\prime}}{c^{2} T^{2}}=T \quad \text { and get } \\
T_{n}(-1)= \\
a_{n} \cos (c n t)+b_{n} \sin (c n t)
\end{gathered}
$$

For $n=0$, i.e. $\lambda=0$, we also rowe
we tare $x_{0}(x)=\cos 0=1$ and solving $T_{0}^{\prime \prime}=0$ gives $T_{0}=a_{0}+b o t$.
So the general Solutions is given by

$$
\begin{aligned}
U(x, t) & =\sum_{n=0}^{\infty} x_{n}(x) T n(t) \\
& =a_{0}+b_{0} t+\sum_{n=1}^{\infty} a_{n} \cos (n x) \cos (n n t)+\sum_{n=1}^{\infty} b_{n} \cos (n x) \sin (n t)
\end{aligned}
$$

teds time derivative is

$$
U_{t}(x, t)=b_{0}-\sum_{n=c}^{\infty} c n \cdot a_{n} \cos (n x) \sin (c n t)+\sum_{n=1}^{\infty} c \cdot n \cdot b_{n} \cos (n x) \cos (c n t)
$$

plur in $t=0$, we get

$$
\begin{aligned}
& 0=u(x, 0)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x) \\
& \frac{1}{2}+\frac{\cos 2 x}{2}=u_{t}(x, 0)=b_{0}+\sum_{n=1}^{\infty} C \cdot n \cdot b_{n} \cos (n x)
\end{aligned}
$$

Thus we an determine the coeffeionts.
using that $\sin m x \cos n x$ are ideperdet if $m \neq n$, we get
$a_{n}=0$ for all n
$b_{n}=0$ for all n except for $n=0$ or 2
and $b_{0}=\frac{1}{2}, \quad c \cdot 2 \cdot b_{2}=\frac{1}{2} \Rightarrow b_{2}=\frac{1}{4 c}$ so the Solution fo this Question is

$$
u(x, t)=\frac{1}{2} t+\frac{1}{4 c} \cos (2 x) \sin (2 c t)
$$

PS 5 QA:
The Fourier series is (as defined in Week 6 notes)

$$
\hat{f}(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{\pi n x}{\pi}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{\pi n x}{\pi}\right)
$$

with

$$
\begin{aligned}
a_{0} & =\frac{c}{2 \pi} \int_{-\pi}^{2} f(x) d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{2}|\sin x| d x \\
& =\frac{1}{\pi} \int_{0}^{2} \sin x d x \\
& =\left.\frac{1}{\pi} \cdot(-\cos x)\right|_{0} ^{\pi} \\
& =\frac{2}{\pi}
\end{aligned}
$$

and

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{n \pi x}{\pi} d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}|\sin x| \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos n x d x
\end{aligned}
$$

We compute

$$
\begin{aligned}
\int_{0}^{\pi} \sin x \cos n x d x & =-\left.\cos x \cos n x\right|_{0} ^{\pi}-\int_{0}^{\pi}(-\cos x)(-n \sin n x) d x \\
& =(-1)^{n}+1-n \int_{0}^{\pi} \cos x \sin n x d x \\
& =(-1)^{n}+1-\left.n \sin x \sin n x\right|_{0} ^{\pi}+n^{2} \int_{0}^{\pi} \sin x \cos n x d x \\
& =1+(-1)^{n}+n^{2} \int_{0}^{\pi} \sin x \cos n x d x
\end{aligned}
$$

Thus $\int_{0}^{\pi} \sin x \cos n x d x=\frac{-1-(-1)^{n}}{n^{2}-1}$
and $a_{n}=\frac{2\left[-1-(-1)^{n}\right]}{\pi \cdot\left(n^{2}-1\right)}$
Noticing $f(x)=(x)$ is even, so all $b_{n}=0, n=1,2, \ldots$

Thus $\hat{f}(x)=\frac{L}{2}+\sum_{n=1}^{\infty}-\frac{2\left[-1-(-1)^{n}\right]}{\pi \cdot\left(n^{2}-1\right)} \cos (n x)$

PS 6 QI:
using the formula $(3,6)$ in week 6 notes for in hougerees problem with

$$
\begin{aligned}
& \psi(x)=\sin x \\
& f(x)=0 \\
& g(x)=\sin x
\end{aligned} \quad \text { and } \quad c=1
$$

we get

$$
\begin{aligned}
u(x, t)= & \frac{0+0}{2}+\frac{1}{2} \int_{x-t}^{x+t} \sin s d s \\
& +\frac{1}{2} \int_{0}^{1} \int_{x-t+s}^{x+t s} \sin r d r d s \\
= & \frac{\cos (x-(t)-\cos (x+c t)}{2} \\
& +\frac{1}{2} \int_{0}^{t}[\cos (x-t+s)-\cos (x+t-s)] d s \\
= & \frac{\cos (x-c t)-\cos (x+(t)}{2}+\frac{\sin x-\sin (x-t)}{2}
\end{aligned}
$$

$$
\begin{aligned}
&-\frac{1}{2}[-\sin x+\sin (x+t)] \\
&= \frac{\cos (x(t)-\cos (x+c t)}{2}+\sin x-\frac{\sin (x-c t)+\sin (x+(t)}{2} \\
& \text { PS } 6 \text { QU. }
\end{aligned}
$$

For this Quation, we on directly apply the formal in section 3 of Week 5 notes with $L=\pi$

$$
\begin{aligned}
& f=b \sin x+2 b \sin (2 x) \\
& g=\sin x
\end{aligned}
$$

Thus

$$
\begin{aligned}
& a_{n}=\frac{2}{\pi} \int_{0}^{L}[b \sin x+2 b \sin (2 x)] \sin (n x) d x \\
& b_{n}=\frac{2}{n \pi c} \int_{0}^{L} \sin x \sin (n x) d x
\end{aligned}
$$

lasing the orthogonality of $\sin n x$ ard $\sin m x$ we see all $a_{n}=0$ except for $n=1,2$, ard $a_{1}=b, a_{2}=2 b$
all $b_{n}=0$ except for $n=1$ and $b_{1}=\frac{1}{c}$

$$
\begin{aligned}
& \text { so } \\
& u(x, t)= b \cdot \sin x \cos (c t)+2 b \sin (2 x) \cos (2(t) \\
&+\frac{1}{c} \sin x \sin (c t)
\end{aligned}
$$

PS $6 Q 8:$

- we differeatiate $E[u](t)$ with resped to t and get
$\frac{d}{d t} E[u](t)$

$$
\begin{aligned}
& =\frac{d}{d t} \frac{1}{2} \int_{-\infty}^{\infty}\left[u_{t}^{2}+\partial^{2} u_{x}^{2}\right] d x \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \frac{d}{d t}\left[u_{t}^{2}+\partial^{2} u_{x}^{2}\right] d x \quad \text { vchain rule } \\
& =\frac{1}{2} \int_{-\infty}^{\infty}\left[2 \cdot u_{t} \cdot u_{t t}+2 \partial^{2} \cdot u_{x} \cdot u_{x t}\right] d x \\
& =\int_{-\infty}^{\infty} u_{t} \cdot u_{t t} d x+\partial^{2} \int_{-\infty}^{\infty} u_{x} \cdot u_{x t} d x \quad \text { unterration } \\
& =\int_{-\infty}^{\infty} u_{t} \cdot u_{t t} d x+\left.\partial^{2} u_{x} \cdot u_{t}\right|_{x=-\infty} ^{\infty}-\partial^{2} \int_{-\infty}^{\infty} u_{x x} \cdot u_{t} d x \\
& =\int_{-\infty}^{\infty} u_{t} \cdot u_{t t} d x-\int u_{t} \cdot \partial^{2} u_{x x} d x \cup \begin{array}{c}
\text { sing coap asel } \\
\text { support }
\end{array} \\
& =\int_{-\infty}^{\infty} u_{t}\left[u_{t t}-\partial^{2} u_{x x}\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} u_{t} \cdot c u_{t} \quad 4 u \operatorname{sing} \text { the PDE } \\
& u_{t t}-\partial^{2} u_{x x}=c \cdot u_{t} \\
& =c \cdot \int_{-\infty}^{\infty} u_{t}^{2} \\
& \left.\leqslant 0 \quad \text { (because } c<0 \text { and } \int_{-\infty}^{\infty} u_{t}^{2} \geqslant 0\right)
\end{aligned}
$$

so the enemy is nor -increasing.

- For the second pert of the question, supposes u_{1} and u_{2} are 2 solutions to

$$
\left\{\begin{array}{l}
u_{f f}-\partial^{2}\left(u_{x f}-c u_{c}=\psi(x), \quad c<0\right. \\
\left.u(x, 0)=f_{e x}\right), \quad u_{f(x, 0)}=g(x)
\end{array}\right.
$$

free $V=U_{1}-U_{2}$ is a solution to

$$
\left\{\begin{array}{l}
V_{t f}-\lambda^{2} V_{x x}-c V_{t}=0 \\
V(x, 0)=0, \quad V_{t}(x, 0)=0
\end{array}\right.
$$

Notice the initial condition gives

$$
E[V](0)=\frac{1}{2} S 0+\partial^{2}-0=0
$$

and the first part shows us E[V]((t)) is non-increaring.
Put heose $E[V](t) \geqslant 0$ for all t, so we aust have $E[v](t) \equiv 0$

Namely $V_{x} \equiv 0$ and $V_{t} \equiv 0$.

$$
\begin{aligned}
V(x, t)= & \int_{0}^{t} V_{t}(x, s) d s+V(x, 0) \\
= & 0+0=0
\end{aligned}
$$

So $V \equiv 0$ and thus $U_{1} \equiv U_{2}$ and the solution to $(x f)$ is unique.

$$
P s 7 Q 4=
$$

The several Solutions to Lapbee equation in a disc radius γ_{*} is (as deduced in Week \& notes)

$$
U(x, t)=a_{0}+\sum_{m=1}^{\infty} r^{m}\left(a_{m} \cos m \theta+b_{m} \sin m \theta\right)
$$

with bondey condition

$$
f(\theta)=U\left(r_{*}, \theta\right)=a_{0}+\sum_{m=1}^{\infty} \gamma_{A}^{m}\left(a_{m} \cos m \theta+b_{m} \sin m \theta\right)
$$

there $f(\theta)=\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta$
so using the foot that $\cos (m \theta)$ and $\sin n \theta$ are independat, we observe that

$$
a_{0}=\frac{1}{2}, \quad r_{*}^{2} \cdot a_{2}=-\frac{1}{2} \Rightarrow \quad a_{2}=-\frac{1}{2 r_{*}^{2}}
$$ all other a_{n} and b_{n} are zero.

so

$$
U(x, t)=\frac{1}{2}-\frac{r^{2}}{2 r_{*^{2}}} \cos (2 \theta)
$$

