MTH6107 Chaos \& Fractals

Solutions 4

EXAM QUESTION: the questions below are based on the various parts of Question 2 on the January 2023 exam paper

Suppose $a \geq 2$, and that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x^{2}-a$.
Exercise 1. Determine all fixed points of f, and determine whether each fixed point is attracting or repelling, taking care to justify your answer.

Fixed points $x=f(x)$ must satisfy $x^{2}-x-a=0$, and the two roots $x^{+}=$ $\frac{1}{2}(1+\sqrt{1+4 a})$ and $x^{-}=\frac{1}{2}(1-\sqrt{1+4 a})$ are both real and distinct, so are fixed points of f.

Now $f^{\prime}(x)=2 x$, so $f^{\prime}\left(x^{+}\right)=1+\sqrt{1+4 a}>1$, and $f^{\prime}\left(x^{-}\right)=1-\sqrt{1+4 a}<-1$ (since $a \geq 2$), so both fixed points are repelling (as their multipliers are larger than 1 in modulus).

Exercise 2. Determine all 2-cycles for f, and determine whether each 2-cycle is attracting or repelling, taking care to justify your answer.

Period-2 points x satisfy $f^{2}(x)=x$, i.e. $\left(x^{2}-a\right)^{2}-a=x$, i.e. are solutions of the quartic equation $x^{4}-2 a x^{2}-x+a^{2}-a=0$.

Using the fact that fixed points are period-2 points we know that $f(x)-x=x^{2}-x-a$ is a factor of the above quartic polynomial, which we can then factorise to see that period- 2 points are solutions of the equation

$$
\left(x^{2}-x-a\right)\left(x^{2}+x+1-a\right)=0 .
$$

The quadratic equation $x^{2}+x+1-a=0$ has solutions $y^{+}=\frac{1}{2}(-1+\sqrt{4 a-3})$ and $y^{-}=\frac{1}{2}(-1-\sqrt{4 a-3})$ (these are both real, since $a \geq 1$), so f has precisely one 2 -cycle, namely $\left\{y^{+}, y^{-}\right\}$.

The multiplier of the 2 -cycle is

$$
f^{\prime}\left(y^{+}\right) f^{\prime}\left(y^{-}\right)=(-1+\sqrt{4 a-3})(-1-\sqrt{4 a-3})=1-(4 a-3)=4-4 a,
$$

and $4-4 a<-1$, since $a \geq 2$, therefore this 2-cycle is repelling.

Exercise 3. Give one example of an eventually fixed point that is not itself a fixed point, and one example of an eventually periodic point of least period 2 that is not itself a periodic point.

In general $f(x)=f(-x)$, and in particular if x is a fixed point then $f(-x)=$ $f(x)=x$, so that $-x$ is an eventually periodic point. So $-x^{+}=-\frac{1}{2}(1+\sqrt{1+4 a})$ is an eventually periodic point that is not itself a fixed point (as is $-x^{-}=-\frac{1}{2}(1-\sqrt{1+4 a})$).

By the same reasoning as above, we see that $-y^{+}=-\frac{1}{2}(-1+\sqrt{4 a-3})$ is an eventually periodic point of least period 2 that is not itself a periodic point (as is $\left.-y^{-}=-\frac{1}{2}(-1-\sqrt{4 a-3})\right)$.

Exercise 4. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x)=x^{2}+a$, determine whether there is a topological conjugacy from f to g, taking care to justify your answer.

There is not a topological conjugacy, since f has two fixed points (by Exercise 1 above) whereas g does not have any fixed points (since the fixed point equation $g(x)-x=0$ has no solutions, since the quadratic equation $x^{2}-x+a=0$ has only non-real solutions $\frac{1}{2}(1 \pm \sqrt{1-4 a})$, since $\left.1-4 a<0\right)$.

Exercise 5. If $F: \mathbb{R} \rightarrow \mathbb{R}$ and and $G: \mathbb{R} \rightarrow \mathbb{R}$ are defined by $F(x)=x-a$ and $G(x)=x+a$, determine whether there is a topological conjugacy from F to G, taking care to justify your answer.

There is a topological conjugacy: taking the homeomorphism $H(x)=-x$ we see that $H(F(x))=-F(x)=-(x-a)=-x+a=H(x)+a=G(H(x))$.

