MTH5104 CONVERGENCE AND CONTINUITY (2023-2024)
 QUIZ 2 (WEEK 6)

Upload your solutions as a single PDF as an answer to the QMPlus quiz. Make sure that your scans are legible before uploading them.
(1) Prove directly from the definition that:

$$
\frac{3}{n+1} \rightarrow 0
$$

(2) Prove that:

$$
\frac{n^{2}+3 n}{2 n^{2}+1} \rightarrow \frac{1}{2}
$$

You may use any results from lectures, but you must state them clearly.

Solutions.

(1) Given $\epsilon>0$ choose $N \in \mathbb{N}$ such that $N \geq 3 / \epsilon$ (this exists by the Archimedean property). This implies that $3 / N \leq \epsilon$. Then for all $n>N$ we have

$$
\frac{3}{n+1}<\frac{3}{n}<\frac{3}{N} \leq \epsilon
$$

and so

$$
\left|\frac{3}{n+1}\right|=\frac{3}{n+1}<\epsilon
$$

as required.
(2) We rewrite this expression as:

$$
\frac{n^{2}+3 n}{2 n^{2}+1}=\frac{1+\frac{3}{n}}{2+\frac{1}{n^{2}}} .
$$

We have seen in lectures that $\frac{1}{n} \rightarrow 0$. A result from lectures says that if $x_{n} \rightarrow 0$ then $c x_{n} \rightarrow 0$ for all $c \in \mathbb{R}$. We conclude that $\frac{3}{n} \rightarrow 0$.

On the other hand we have

$$
\left|\frac{1}{n^{2}}\right| \leq\left|\frac{1}{n}\right|
$$

for all $n \in \mathbb{N}$. A result from lectures (dominated convergence) says that if $y_{n} \rightarrow 0$ and $\left|x_{n}\right| \leq\left|y_{n}\right|$ for all $n \in \mathbb{N}$, then $x_{n} \rightarrow 0$. Since $\frac{1}{n} \rightarrow 0$ we conclude that $\frac{1}{n^{2}} \rightarrow 0$.

A result from lectures says that if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then $x_{n}+y_{n} \rightarrow x+y$. We conclude that

$$
1+\frac{3}{n} \rightarrow 1, \quad 2+\frac{1}{n^{2}} \rightarrow 2
$$

Finally a result from lectures says that if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ with $y \neq 0$ and $y_{n} \neq 0$ for all $n \in \mathbb{N}$, then $x_{n} / y_{n} \rightarrow x / y$. Applying this to the above, we conclude that

$$
\frac{n^{2}+3 n}{2 n^{2}+1} \rightarrow \frac{1}{2}
$$

