Machine Learning with Python
MTH/786U/P 2023/24

Nicola Perra, Queen Mary University of London (QMUL)

n.perra@gmul.ac.uk

mailto:n.perra@qmul.ac.uk

Regression models

In the previous lectures, we have studied regression problems of the form

A\

w = arg min E(w)
WERd-H

)

Regression models

In the previous lectures, we have studied regression problems of the form

A\

w = arg min E(w)

Rd'H
For
E(w) = MSE(w) = — Z | o w) = y,17 -
lq where f is linear in w, we have seen that we can compute w by solving

J ' a linear system of equations

Regression models

In the previous lectures, we have studied regression problems of the form

A\

w = arg min E(w)

Rd+1
For
E(W) = —Z NERDESAE +—uwu2 ,
lq where f is linear in w, we have seen that we can compute w by solving

J ' a linear system of equations

Practical example in courseworké

Practical example in courseworké

The case of Boston houses

)

Practical example in courseworké

The case of Boston houses

For 1200 samples we have

« StreetLength - length of the street in front of the building
e Area - total area of the lot

e Quality - quality of building materials

« Condition - condition of the building

« BasementArea - area of the basement

« LivingArea - total living area

« GarageArea - a garage area

e SalePrice - sale price

Practical example in courseworké

The case of Boston houses

For 1200 samples we have

« StreetLength - length of the street in front of the building

e Area - total area of the lot

e Quality - quality of building materials

« Condition - condition of the building

« BasementArea - area of the basement

« LivingArea - total living area

« GarageArea - a garage area

» SalePrice - sale price +—— target variable

Boston houses price regression case

We used K-fold cross validation to select the best value of the regularization term

)

Boston houses price regression case

We used K-fold cross validation to select the best value of the regularization term

We obtained this solution

b

)

Boston houses price regression case

We used K-fold cross validation to select the best value of the regularization term

We obtained this solution

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746
0.15823934]

of

b

Boston houses price regression case

We used K-fold cross validation to select the best value of the regularization term

We obtained this solution

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746
0.15823934]

b

given a regression method (i.e., ridge regression) which is the best in

This method is for model selection. In this case by model we consider:
4 terms of alpha

Boston houses price regression case

In our project you should/could try also different frameworks comparing their
performance, say, using the MSE and always the k-fold cross validation for each

The output of this approach will be the best model among the ones you tried

b

)

Boston houses price regression case

To present the performance of the best model you can also use the coefficient
of determination defined as the proportion of variation in the dependent variable
explain by the independent variables

b

)

Boston houses price regression case

To present the performance of the best model you can also use the coefficient
of determination defined as the proportion of variation in the dependent variable
explain by the independent variables

> — .2 A
2, (fi=y) £ = (XW),

R°=1-—
Zi i = (")*

b

)

Boston houses price regression case

Some of you by looking at

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746
0.15823934]

Might think, so what? What do we learn from this? How can we interpret
the results?

of

Boston houses price regression case

Some of you by looking at

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746
0.15823934]

Might think, so what? What do we learn from this? How can we interpret
the results?

of

Boston houses price regression case

Boston houses price regression case

In some cases you are more interested at interpreting the model’s outcome. For
example answering questions such as which is the most important feature?

b

)

Boston houses price regression case

How can we interpret the outcomes of a regression?

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746
0.15823934]

of

b

Boston houses price regression case

If you standardise the inputs/outputs each of these w; can be interpreted as the
variation in the output resulting from an increase of a standard deviation in that w:

An optimal value of regularisation parameter 1is 14.0.

F For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746

' 0.15823934]

Boston houses price regression case

If you standardise the inputs/outputs each of these w; can be interpreted as the
variation in the output resulting from an increase of a standard deviation in that w:

50, an increase of one standard deviation in w, (area) will result in a change
in standardized price of 0.068, in w; (condition) of 0.45

An optimal value of regularisation parameter 1is 14.0.

F For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746

' 0.15823934]

Boston houses price regression case

How can we interpret the outcomes of a regression?

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746

0.15823934]

Boston houses price regression case

How can we interpret the outcomes of a regression?

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746
0.15823934]

We can order them

[0.45216932052319875, 'Quality’']
[0.2652874640368329, 'LivingArea’']
[0.15823933619435454, 'GarageArea']
[0.14803396529403573, 'BasementArea’]

[0.06804822890073225, 'Area']
’ [0.03149376548286966, 'Condition’]

[-0.007750257643615537, 'StreetLength’]

Boston houses price regression case

Little issue

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746

0.15823934]

Boston houses price regression case

Little issue

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746

0.15823934]

The output of this method gives us only one value of W

of

Boston houses price regression case

Little issue

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746

0.15823934]

The output of this method gives us only one value of W

How can we provide better estimates for their values, providing for example
lq confidence intervals?

of

Boston houses price regression case

Little issue

An optimal value of regularisation parameter is 14.0.

For this value ofregularisation parameter one gets optimal weights of the form
[-0.00775026 0.06804823 0.45216932 0.03149377 0.14803397 0.26528746

0.15823934]

The output of this method gives us only one value of W

How can we provide better estimates for their values, providing for example
lq confidence intervals?

4 Bootstrap sampling!

Bootstrap sampling

The idea: we can sample the original data (with replacement) and create many
instances of the data

)

Bootstrap sampling

The idea: we can sample the original data (with replacement) and create many
instances of the data

In practice: pick at random (with replacement) N samples, that is, (X, y)
repeat the extraction M times

b

)

Bootstrap sampling

The idea: we can sample the original data (with replacement) and create many
instances of the data

In practice: pick at random (with replacement) N samples, that is, (X, y)
repeat the extraction M times

l' For each of the M samples, we can do a regression, get W

; - then considering the M instances we can compute estimates of them!

Bootstrap sampling

import random as rd

def bootstrap regression(standardised data input,standardised data output,fraction,M,alpha):
first we need to know what is N: the number of samples to extract
data size=len(standardised data output)
samples size=int(data size*fraction)

w list=[]
then for each of the M extract
for j in range(M):
sample input list=[]
sample output list=[]
for 1 in range(samples size):
we take N samples extract random numbers which are the id of the arrays that store the data
id random=rd.randint(0,samples size-1)
note that we need to keep the X and Y correspondence hence the id random is the same for each
sample input list.append(standardised data input[id random])
sample output list.append(standardised data output[id random])

convert the list to arrays
sample input=np.array(sample input list)
sample output=np.array(sample output list)

apply the regression, note that alpha is selected before with the model selection
weights=ridge regression(sample input, sample output, regularisation=alpha)
append the fitted values of Ws for the N samples 1in list
w list.append(weights)
return w list 1 5

Bootstrap sampling

Results using M=10000 samples

0.6 -
0.5 -
0.4 -
0.3 -
= 02 -
0.1 -

0.0 -

-0.1 -

-() 2 -

Logistic regression

Issues with MSE regression for classification:

E

C X _
"'q—) o
D O
S o~
= o
5 °
©

O o
e o
D- (@)

0 500 1000 1500 2000 2500
Balance

Logistic regression

Issues with MSE regression for classification:

3w

Predicted values are usually not in [0,1] © ©
5 oS-
= o
5 °
©
Q o
e o
D- (@)

F I I I I I I

0 500 1000 1500 2000 2500
Balance

Logistic regression

Issues with MSE regression for classification:

Predicted values are usually not in [0,1]

If the predicted values would be much

smaller than zero or larger than one, the MSE

would penalize them though they would be
lq very confident output of the classification

0 500 1000 1500 2000 2500
Balance

Probability of Default
00 02 04 06 08 1.0

Logistic regression
It seems reasonable to transform the prediction into a probability, i.e.

consider o({x;, w)) instead of (x,w)

with o¢: (=00, 00) = [0,1]

b

)

Logistic regression
It seems reasonable to transform the prediction into a probability, i.e.
consider o({x;, w)) instead of (x,w)
with o : (=00, 00) — [0,]1]

Many ways of doing so; popular choice is the logistic function

b

() = —%
4 GZ°_I+eZ

Logistic regression

o(z2) 1.0

0.8 -

0.6 -

Logistic regression

Consider binary classification with class labels 0 and 1

)

Logistic regression

Consider binary classification with class labels 0 and 1

Input/output training samples {(x;,¥,)}’_, with y, € {0,1}

b

)

Logistic regression

Consider binary classification with class labels 0 and 1
Input/output training samples {(x;,y,)}’_; with y, € {0,1}

Model assumption: f(x;, w) = (X;, W)

b

)

Logistic regression

Consider binary classification with class labels 0 and 1
Input/output training samples {(x;,y,)}’_; with y, € {0,1}

Model assumption: f(x;, w) = (X;, W)

l' Posterior probability of the two class labels given X is:

4 p(1]X) = 6((X, W))
2 : p(0]x) = 1 — 6((X, W))

Logistic regression

Training: how do we obtain optimal parameters w given input/output
samples {(x;,y)}:_?

)

Logistic regression

Training: how do we obtain optimal parameters w given input/output
samples {(x;,y)}:_?

Assumption (as always): samples (x;, y.)are iid

)

Logistic regression

Training: how do we obtain optimal parameters w given input/output
samples {(x;,y)}:_?

Assumption (as always): samples (x;, y.)are iid

Then the likelihood of y given Xand wis p(y|X.w) = [o0 1x)
=1

Ai1

-
) ’ for y (= y:Z : X = X.2 and X, ! A2

Logistic regression

piy 1X.w) = [[o(ilx)
=1

b

)

Logistic regression
piy 1X.w) = [[o(ilx)
=1

= | [o((xi W)y (1 = o((x;, W)=
=1

b

)

Logistic regression
piy 1X.w) = [[o(ilx)
=1

= | [o((xi W)y (1 = o((x;, W)=
=1

Negative log-likelihood:

b ~log(p(y X, w)) = —log (Ha«xi, W) (1= o((x; w>>>1-%)

)

=1

Logistic regression

Negative log-likelihood:

~log(p(y| X, w)) =—log (Ha«x,-, W) (1 = 6((x, w>>>1-%)

=1

= —) [ilog(a((x;,) + (1 = ylog(l = o((x;, w)))]
=1

b

)

Logistic regression

Negative log-likelihood:

~log(p(y| X, w)) =—log (Ha«x,-, W) (1 = 6((x, w>>>1-%)

=1

= —) [ilog(a((x;,) + (1 = ylog(l = o((x;, w)))]
=1

e’ e’ 1

! ' o(2) I + €< o(2) 1 + €< | + €2

Logistic regression

Negative log-likelihood:

\)

~log(p(y|X, W) = =), [v;log(o((x;, W) + (1 = yplog(1 = o((x;, W))
=1

S e<Xi9W> 1
= — 1o + (1 — v)lo

)

Logistic regression

Negative log-likelihood:

\)

~log(p(y|X, W) = =), [v;log(o((x;, W) + (1 = yplog(1 = o((x;, W))
=1

S e<Xi9W> 1
= — 1o + (1 — v)lo

= " 1og (1 +exp((x, W))) = ; (x;, W)
=1

)

Logistic regression

—~log(p(y | X, w))=) log (1 +exp((x, W))) — y, (X, W)
=1

)

Logistic regression

—~log(p(y | X, w))=) log (1 +exp((x, W))) — y, (X, W)
=1

W = arg Invin {—log(ﬂ(y | X, W))}

)

Logistic regression

—~log(p(y | X, w))=) log (1 +exp((x, W))) — y, (X, W)
=1

W = arg min {~log(p(y | X, w))}

= arg mm { Z log 1 + exp((X;, W))) y: (X, W)}

)

Logistic regression

—~log(p(y | X, w))=) log (1 +exp((x, W))) — y, (X, W)
=1

W = arg Invin {—log(ﬂ(y | X, W))}

= arg mm { Z log 1 + exp((X;, W))) y: (X, W)}

4 = w maximises the likelihood
(i.e. maximises the probability of observingy, given X)

Multinomial logistic regression

The key idea 1s to model multiple classes with a probability simplex

(~ discrete probability density)

> = {pe R" | p.>0forie{l,...,n} and Zpiz 1}
=1

)

Multinomial logistic regression

The key idea 1s to model multiple classes with a probability simplex

(~ discrete probability density)

Y=9p€R" | p,>0forie{l,...,n}and Zpizl

35(@ @& .. -l

Class 1 Class 2 Class 3

Multinomial logistic regression

How can we map a vector onto the probability simplex?

)

Multinomial logistic regression

How can we map a vector onto the probability simplex?

One way to do it: via the softmax function

exp(vy) exp(v,) exp(v,)
o(v) = softmax(v) := (- :)

Z;fl:l exp(v;) Z;lzl exp(v;) Z;;l exp(v;)

)

Multinomial logistic regression

How can we map a vector onto the probability simplex?

One way to do it: via the softmax function

exp(vy) exp(v,) exp(v,)
o(v) = softmax(v) := (- :)

2;;1 exp(v;) Z;lzl exp(v;) Z;;l exp(v;)

Component-wise:

Multinomial logistic regression

How can we map a vector onto the probability simplex?

exp(vy) exp(v,) exp(v,)
o(v) = softmax(v) := (1 :)

Z;l:l exp(v;) 2;;1 exp(v;) 2;;1 exp(v;)

Why is it called softmax?

b

)

Multinomial logistic regression

How can we map a vector onto the probability simplex?

exp(vy) exp(v,) exp(v,)
o(v) = softmax(v) := (1 :)

Z;l:l exp(v;) 2;;1 exp(v;) 2;;1 exp(v;)

Why is it called softmax?
Example: (1.5 0.3 -3.7)

b

)

Multinomial logistic regression

How can we map a vector onto the probability simplex?

exp(vy) exp(v,) exp(v,)
o(v) = softmax(v) := (1 :)

Z;l:l exp(v;) 2;;1 exp(v;) 2;;1 exp(v;)

Why is it called softmax?
Example: (1.5 0.3 -3.7)

lq argmax (1.5 03 -3.7)=0

)

Multinomial logistic regression

How can we map a vector onto the probability simplex?

exp(vy) exp(v,) exp(v,)
o(v) = softmax(v) := (1 :)

Z;l:l exp(v;) 2;;1 exp(v;) 2;;1 exp(v;)

Why is it called softmax?
Example: (1.5 0.3 -3.7)

lq argmax (1.5 03 -3.7)=0

!J The max argument of the vector is the value in position O

Multinomial logistic regression

How can we map a vector onto the probability simplex?

exp(v;) exp(v,) o exp(v,)
Z;;l exp(v;) Z;l:l exp(v;) Z;lzl exp(v;)

o(v) = softmax(v) := (

Example: (1.5 0.3 -3.7)

)

Multinomial logistic regression

How can we map a vector onto the probability simplex?

exp(v;) exp(v,) o exp(v,)
Z;;l exp(v;) Z;;l exp(v;) Z;;l exp(v;)

o(v) = softmax(v) := (

Example: (1.5 0.3 -3.7)

Alternatively, we can use the so called one-hot-vector representation

l' argmax (1.5 0.3 =-3.7)=0 0 0)

)

Multinomial logistic regression

How can we map a vector onto the probability simplex?

cw) gy el
Z;’zl exp(v;) 2;;1 exp(v;) Z;l:l exp(v;)

o(v) = softmax(v) := (

Example: (1.5 0.3 -3.7)

)

Multinomial logistic regression

How can we map a vector onto the probability simplex?

cw) gy el
Z;’zl exp(v;) Z;;l exp(v;) Z;;l exp(v;)

o(v) = softmax(v) := (

Example: (1.5 0.3 -3.7)
What if we apply the softmax function to this input?

R 6 ((1.5 03 =3.7) ~(0.765 0.231 0.004)

!ﬂ{ It is a smoother version of the argmax, hence softmax

Multinomial logistic regression

We can use the softmax function as probability density function for our
classification problem:

)

Multinomial logistic regression

We can use the softmax function as probability density function for our
classification problem:

Input/output training samples {(x;y,)}:_; with y; € {1,2,..., K}

b

)

Multinomial logistic regression

We can use the softmax function as probability density function for our
classification problem:

Input/output training samples {(x;y,)}:_; with y; € {1,2,..., K}

Model assumption: f(x, W, ...,Wg) = ((X,-, W) (XpWo) .o (X WK>)

b

)

Multinomial logistic regression

We can use the softmax function as probability density function for our
classification problem:

Input/output training samples {(x;y,)}:_; with y; € {1,2,..., K}

Model assumption: f(x, W, ...,Wg) = ((X,-, W) (XpWo) .o (X WK>)

b "

: (The output is a K dimensional vector for each X; € | , W, € R+

Multinomial logistic regression

Multinomial logistic regression

Likelihood for one pair of samples:

exp((X;, W;))
p(yi:k‘xi’wl’”"WK) .= U(f(Xiawlaﬂ-awK))k: K '

> exp((x;,w)

l. fork e {1,...,K}.

)

Multinomial logistic regression

Likelihood for all samples:

pG =y IX. W)= [] pGi=yilx. Wi, ..o wp)
=1

X|

f0ry=(y1,---,yS)T,X=[E] and W = (W; W ... Wg)

Y :

Multinomial logistic regression

pG =y I1X. W)= [[oG =y 1x. Wy, .o wp)
=1

Multinomial logistic regression

pG =y I1X. W)= [[oG =y 1x. Wy, .o wp)
=1
We can simplify this likelihood as follows:

pG=yIX W= || rGi=1Ixawiowp - [r0i=KIxowi.owy)
vy =1} |y =K}

b

)

Multinomial logistic regression

pG =y I1X. W)= [[oG =y 1x. Wy, .o wp)
=1

We can simplify this likelihood as follows:

pG=yIX W= || rGi=1Ixawiowp - [r0i=KIxowi.owy)
iy =1} |y =K}

notation to simplify the
0 otherwise

We can use the indicator 1, _; := {

b

expression above
!A{ Py =yI|X, W)= HHP(yl = k| X;, Wi, ..o W) Dt

=1 k=1

Multinomial logistic regression

Py =yIX, W) := HHp(yl—k\X Wi, .., W) vk

=1 k=1

As usual, we estimate the parameters W by minimising the negative log-likelihood:

A\

W=arg min —log(p@F=y|X,W))
WERCZ +1xXK

b

)

Multinomial logistic regression

pF=yIX. W) := HHp(y, = k| X, Wy, ...y W) ot

=1 k=1

As usual, we estimate the parameters W by minimising the negative log-likelihood:

A\

W=arg min —log(p@F=y|X,W))

WERCZ +1xK
S K
=arg min - log I I I Ip(yi: k|x, Wl,...,wK)lyz:k
WERCZ+1><K

i=1 j=1

)

Multinomial logistic regression

pF=yIX. W) := HHp(y, = k| X, Wy, ...y W) ot

=1 k=1

As usual, we estimate the parameters W by minimising the negative log-likelihood:

A\

W =arg min - log (p(y =vy| X, W))
WERCZ +1XK

S K
A 1. _
=arg min_—log| [TT]rG: = kIx.wy,....we)'=
WERCHD(K
i=1 j=1

—arge min — 1. . lo =k|X,Wi,....,.W
!A{ g i Z}; _log (p(; = k| x;, W,)

Multinomial logistic regression

As usual, we estimate the parameters W by minimising the negative log-likelihood:

A\

W =arg min —221 _log p(yl—k\x W, ...,WK))

W Rd+lxK
= =1 k=1

)

Multinomial logistic regression

As usual, we estimate the parameters W by minimising the negative log-likelihood:

W = arg min —221 _; log P(yl—k\xpwla---»WK))

WERd+1xK

=1 k=1
cX X:, W
— mla’l:l—llxK— Z Zl —klog K p(< l k>)
WEIR 1 11 ijl exp((Xi, Wj>)

)

Multinomial logistic regression

As usual, we estimate the parameters W by minimising the negative log-likelihood:

W = arg min —221 _; log P(yl—k\xpwla---»WK))

WERd+lxK

=1 k=1
cX X:, W
— mla’l:l—llxK— Z Zl —klog K p(< l k>)
WEIR 1 11 ijl exp((Xi, Wj>)

!4 B argWIfliIdIJ}lxKZ Z l yi=k log [Z exp({X;, Wj>)] — (X, Wy)
S =1 k=1

Multinomial logistic regression

As usual, we estimate the parameters W by minimising the negative log-likelihood:

log [Z exp({X;, Wj>)] — (X; Wk>]

W =arg min ZZl_k
WERd+1 XK -
= —

b

)

Multinomial logistic regression

As usual, we estimate the parameters W by minimising the negative log-likelihood:

log [Z exp({X;, Wj>)] — (X; Wk>]

W =arg min ZZl_k
WERd+1><K T
= —

= arg Wéﬁb‘}M Z Z I, _xlog [D exp((x;, Wj>)] Z Z Ly (X5 W)

=1 k=1 =1 k=1

b

)

Multinomial logistic regression

As usual, we estimate the parameters W by minimising the negative log-likelihood:

W =are min 1. _,1l1lo eXp({X;, W) | — (X, W
gWERdHXKZZ i g[z p((x; J>)] (X W)

=1 k=1
s K
= arg W;ﬁ%m 21 kz 1, ¢ log [Z exp({X,, WJ-))] — Zl]; Ly, _5(X;s Wi)

S K

!4 = aIg ngl%ld{}lm Zl 10g []Z €Xp(<XZ, Wi] - lzZl]; lyz:k(Xi’ Wk)

How to solve logistic regression computationally?

The minimisation problems for logistic regression read

)

How to solve logistic regression computationally?

The minimisation problems for logistic regression read

Binary: W = arg mm { Z log 1 + exp({x, W))) y: (X, W)}

b

)

How to solve logistic regression computationally?

The minimisation problems for logistic regression read

Binary: W = arg mm { Z log 1 + exp({x, W))) y: (X, W)}

lﬂ Multinomial: W = arg WEIHI:;(ldIJ}l)XK Z log [Z exp((X;, wj))] — Z Z 1, _{X;, W;)

)

How to solve logistic regression computationally?

The minimisation problems for logistic regression read

Binary: W = arg mm { Z log 1 + exp({x, W))) y: (X, W)}

\)

K
lﬂ Multinomial: W = arg WEIHI:;(ldIJ}l)XK Z log [Z exp({X;, wj))] — Zl Zl 1, _{X; W))
=1 J=

!ﬂ{; How do we solve these minimisation problems computationally?

39

How to solve logistic regression computationally?

How do we solve these minimisation problems computationally?

Possible approach: gradient descent!

wtl = wk — 2V L(WF)

for

4 L(w") = Z log (1 + exp((X;, Wk») — Vi {X;, W)
! i=1

How to solve logistic regression computationally?

How do we solve these minimisation problems computationally?

Possible approach: gradient descent!

WL = WE — £V L(W5)
for

S K s K
L(W¥) = Z log [Z exp((X;, Wf>)] — Z Z 1yi=j<Xi9 W]k>
=1

; , ' i=1 i=1 j=1

How to solve logistic regression computationally?

How do we solve these minimisation problems computationally?

Possible approach: gradient descent!

WL = WE — £V L(W5)
for

S K s K
L(W¥) = Z log [Z exp((X;, Wf>)] — Z Z 1yi=j<Xi9 W]k>
=1

i=1 j=1

. o
!ﬂ{; For this we need to compute the gradients!

41

Gradients of logistic regression functions

We compute the gradient for the binary logistic regression case

L(w") = Z log (1 + exp((X;, Wk») — Vi {X;; w’)
i=1

)

Gradients of logistic regression functions

We compute the gradient for the binary logistic regression case

L(w") = Z log (1 + exp((X;, Wk») — Vi {X;; w’)
i=1

Lets start with a simpler problem: for g(z) := log(1 + exp(z)) we observe

exp(z)

= = 06(2)

lﬂ 81(2) = 1 + exp(z) 1+ exp(—2)

)

Gradients of logistic regression functions
L(w") = 2 log (1 + exp({X;, Wk))) — v, {x;, WK}
=1

Hence, we compute the following partial derivatives for the binary logistic
regression case:

oL c c
™ (W) = Z log [1 + exp [Z xljwjk]] -V Z xl-jwjk

=1

b

ls{ —ixi []ZO]—yl X

Gradients of logistic regression functions

L(wh) =) log (1 + exp((x;, wk))) — y; (x;, W)
=1

As a consequence, the gradient VL(w") reads

VLW = X (a(ka) _ y)

X1
l’ for X =1 : |. Here a(ka) denotes the application of the logistic function

XS
!ﬂ{; to every component of the vector Xw".

Conditions of optimality

Hence, we aim to solve

wHl = wh— 7V X (G(ka) — y)
to find a weight vector w that satisfies

VLW) =0 < X' (o(Xw)—y)=0

b

)

Conditions of optimality

Hence, we aim to solve

wHl = wh— 7V X (G(ka) — y)
to find a weight vector w that satisfies

VLW) =0 < X' (o(Xw)—y)=0

l’ We have a numerical procedure, but we also want to know:

!A{ L(W) < L(w) Vwe R ?

Conditions of optimality

Hence, we aim to solve

wHl = wh— 7V X (G(ka) — y)
to find a weight vector w that satisfies

VLW) =0 < X' (o(Xw)—y)=0

l’ We have a numerical procedure, but we also want to know:

!A{ L(W) < L(w) Vwe R“™1? How do we find out?

Conditions of optimality

If we can show convexity of L, we already know

VL(W)=0 = LW) <Lw),VweER"

)

Conditions of optimality

If we can show convexity of L, we already know

VL(W)=0 = LW) <Lw),VweER"

Lemma: the function

Lw) =) log (1 +exp({x, w))) =y, (x, W)
=1

l’ 1S convex.

)

Conditions of optimality

Lemma: the function

L(w) = Z log (1 + exp({X,, W))) — V: (X, W)
i=1

1S convex.

Proof: 1.Sum of convex functions is convex

2. The functions —y«(x,, w) are linear in w, and therefore convex

lﬂ 3. We therefore only need to show that

4 log(1 + exp({x;, W)))
1S convex

Conditions of optimality

Lemma: the function
L(w) =) log (1 +exp((x,w))) — y;(x, w)
=1

1S convex.

Proof continued:

b

)

Conditions of optimality

Lemma: the function
L(w) =) log (1 +exp((x,w))) — y;(x, w)
=1

1S convex.

Proof continued: consider f(z) =1log(1l + exp(z))

b

)

Conditions of optimality

Lemma: the function
L(w) =) log (1 +exp((x,w))) — y;(x, w)
=1

1S convex.

Proof continued: consider f(z) =1log(1l + exp(z))

We compute f(z) = o(2) and 1(z) = 6(2)(1 — 06(2))

b

)

Conditions of optimality

Lemma: the function
L(w) =) log (1 +exp((x,w))) — y;(x, w)
=1

1S convex.

Proof continued: consider f(z) =1log(1l + exp(z))

We compute f(z) = o(2) and 1(z) = 6(2)(1 — 06(2))

b

: 4 We immediately observe f(z) > 0 for all z € R ; hence, f is convex

Conditions of optimality

Lemma: the function

L(w) = Z log (1 + exp({X,, W))) — V: (X, W)
i=1

1S convex.

Proof continued: consider f(z) =1log(1l + exp(z))

We compute f(z) = o(2) and 1(z) = 6(2)(1 — 06(2))

b

We immediately observe f(z) > 0 for all z € R ; hence, f is convex
ls{ J/ is a composition of a convex and a linear function and therefore convex .

48

Variational regularisation

Instead of minimising the logistic regression cost function, we can also consider
regularised reconstructions:

w = arg min {L(wW) + aR(w)}

= arg min { Z log (1 + exp({X, W))) — V. (X, W) + OCR(W)}

W i=1

)

Variational regularisation

Instead of minimising the logistic regression cost function, we can also consider
regularised reconstructions:

w = arg min {L(wW) + aR(w)}

= arg min { Z log (1 + exp({X, W))) — V. (X, W) + OCR(W)}

W i=1

lq Example: logistic ridge regression

4 W = arg mvin { Z llog (1 + exp({X,, W))) — V. (X, W)] + %”W”z}
!9 i=1

Variational regularisation

When the regularisation term is also differentiable, then gradient descent can
still be applied

VLW) = X" (6(XwW) —y) + a VR(W)

)

Variational regularisation

When the regularisation term is also differentiable, then gradient descent can
still be applied

VLW) = X" (6(XwW) —y) + a VR(W)

Example: logistic ridge regression

VL(w)=X" (a(XW) — y) +aw

b

)

Variational regularisation

When the regularisation term is also differentiable, then gradient descent can
still be applied

VLW) = X" (6(XwW) —y) + a VR(W)

Example: logistic ridge regression

VL(w)=X" (a(XW) — y) +aw

b

: ' If R is not differentiable, we can eventually use proximal gradient descent:

wtl =T +7adR)! (Wk —rX' (G(XWk) — Y>>

Link with the logit function

Link with the logit function

Input/output training samples {(x;,¥,)}’_, with y, € {0,1}

)

Link with the logit function

Input/output training samples {(x;,¥,)}’_, with y, € {0,1}

Model assumption: f(x,w) = (x,w)

)

Link with the logit function

Input/output training samples {(x;,y)}:_, with y;, € {0,1}
Model assumption: f(x;,w) = (X;, W)

Posterior probability of the two class labels:

p(1]x;) = o({(X;, W)) p(O0]x;) =1 —o({x;, W))
1 Xi 351

r for y:=|.1|, X=|] and Xx;:=|*2
Ys X;l' x;'d

Logistic function

o(z2) 1.0

0.8 -

0.6 -

Link with the logit function

Link with the logit function

1) = : —
Hence, we have p(L]x) = o((x;, W)) 1 4 e—(xsW)

)

Link with the logit function

Hence, we have p(l ‘Xz) — 0(<Xi’ W>) — 1 4+ e—(XxW)

Can we express the linear model as function of sigma?

b

)

Link with the logit function

Hence, we have p(l ‘Xz) — 0(<Xi’ W>) — 1 4+ e—(XxW)

Can we express the linear model as function of sigma?

1

1 + e~ %W =
0(<Xi9 W>)

b

)

Link with the logit function

Hence, we have p(l ‘Xz) — 0(<Xi’ W>) — 1 4+ e—(XxW)

Can we express the linear model as function of sigma?

1 + e_<Xi’W> — 1 N e—(xi,w) _ 1 1 — 1 — 0(<Xia W>)

o({X;, W)) o((X;, W)) o((X;, W))

b

)

Link with the logit function

Hence, we have p(l ‘Xz) — 0(<Xi’ W>) — 1 4+ e—(XxW)

Can we express the linear model as function of sigma?

1 + e_<Xi’W> — 1 N e—(xi,w) _ 1 1 — 1 — 0(<Xia W>)

o({X;, W)) o((X;, W)) o((X;, W))

b

I — o({X; W)))

Link with the logit function

Hence, we have p(l ‘Xz) — 0(<Xi’ W>) — 1 4+ e—(XxW)

Can we express the linear model as function of sigma?

1 + e—(Xi,W> — I N €_<Xi’w> _ 1 _1 = 1 - 0(<Xi’ W>)
o({(X;, W)) o((X;, W)) o((X;, W))
b ey e (s (et
o({X;, W)) 1 —o({x;, W))

)

Link with the logit function

Link with the logit function

We can then write

In o({X;; W)) — (x, W)
1 — 0(<Xi9 W))

)

Link with the logit function

We can then write

G(<Xi9 W>)
1 — 0(<Xi9 W>)
Which is equivalent to

ln(pUIX)) = logit (p(l \Xi)) = (X, W)

1 —p(1]x;)

b

)

Link with the logit function

We can then write

o({X;; W))
1 — 0(<Xi9 W>)
Which is equivalent to

p(1]x;) B . .
In (Y \Xi)) = logit (p(l \Xi)) = (X, W)

b

The left hand side is the log odds since the numerator is the probability
! 4 of outcome 1 divided by the complementary probability (outcome 0)

Odds ratio

Odds ratio

Writing the problem in this way allows us to provide an easy interpretation of the
the weights output of the logistic regression

)

Odds ratio

Writing the problem in this way allows us to provide an easy interpretation of the
the weights output of the logistic regression

We can compute the odds ratio for each variablep € [1,d]

b

)

Odds ratio

Writing the problem in this way allows us to provide an easy interpretation of the
the weights output of the logistic regression

We can compute the odds ratio for each variablep € [1,d]

odds(X:) e XoW)
OR = =
odds(x,) eXeW)

= e <Xi_Xk9W>

)

Odds ratio

Writing the problem in this way allows us to provide an easy interpretation of the
the weights output of the logistic regression

We can compute the odds ratio for each variablep € [1,d]

odds(X:) e XV
OR = =
odds(x,) eXeW)

= e <Xi_Xk9W>

Let’s suppose that the two vectors are the same but for the value in one p € [1,d]

b

)

Odds ratio

Writing the problem in this way allows us to provide an easy interpretation of the
the weights output of the logistic regression

We can compute the odds ratio for each variablep € [1,d]

odds(X:) e XV
OR = =
odds(x,) eXeW)

= e <Xi_Xk9W>

Let’s suppose that the two vectors are the same but for the value in one p € [1,d]

_ T
X; = (L, oo X0 oo Xig)

.{ X = (1Xg1s oo Xy = 1y 1)

Odds ratio

Odds ratio

odds(x;) e%W

= e <Xi_XkaW>

OR =

 odds(x;) T etxw)

Odds ratio

odds(X:) e XoW)
OR =

— — — e<Xi_Xk’W>
odds(x;) e{XeW)

,de)_r Xk= (l,xll,.,.xlp_ 1,.,de)T

Xl — (1,Xll, ...,)Cl-p, . o

Odds ratio

odds(x;)) W
OR =

— — — e<Xi_Xk’W>
odds(x,) eXeW)

X)) X, = (1,x;,....,x, — 1,....x.)"

Xl= (1,xi1,...,.x ip

D’

X, — X, = 0,0,....1,...,0)"

Component p

Odds ratio

odds(x;) e%W

OR — — — e(Xi_Xk’W>
odds(x,) eXeW)
Xl= (1,Xll,.,xlp,.,xld)_r Xk= (l,xll,.,xlp_ 1,.,de)T
dds(X. (X;;W)
X; — X, = (O,O,...,l,...,O)T OR = 0 S(XZ) c — e

P odds(xy) T oW

Component p

Odds ratio

odds(x;)) W

OR — — — e(Xi_Xk’W>
odds(x,) eXeW)
Xl= (I,Xll,.,xlp,.,xld)_r Xk= (l,xll,.,xlp_ 1,.,de)T
dds(X. (X;, W)
Xi—Xk:(O,O,...,l,...,O)T OR = odas(l) c — e

P odds(xy) efew)

Component p

b

This provides an interpretation for the weights: the odds of y=1 are multiplied
by e"» for every unit increase of the variable p

Multinomial logistic regression

eXp(<Xi9 Wp>)
PO =D X Wi, oo, W) 1= 0(f(X;, Wy, .o, W), = K

Z =1 eXp(<Xi9 W]>)

J

forp e {l,...,K}.

b

)

Multinomial logistic regression

eXp(<Xi9 Wp>)
PO =D X Wi, oo, W) 1= 0(f(X;, Wy, .o, W), = K

Z =1 eXp(<Xi9 W]>)

J

forp e {l,...,K}.

Since there are K possible outcomes we cannot speak directly about odds ratio
lﬂ as for the binary case

)

Multinomial logistic regression

What we have seen so far targets the classification task

)

Multinomial logistic regression

What we have seen so far targets the classification task

If we want to provide an interpretation of the regression bit, we need to switch
to odd ratios and logit functions (i.e., multinomial logit regression) which
however requires some extra steps

b

)

Multinomial logistic regression

In order to be able to define odds with K categories we need to pick one of them
(say j) as baseline/reference

)

Multinomial logistic regression

In order to be able to define odds with K categories we need to pick one of them
(say j) as baseline/reference

Hence, in this multinomial logit model, we deal with K-1 binary regressions where
we study the odds of each outcome with respect to the baseline

b

)

Multinomial logistic regression

In order to be able to define odds with K categories we need to pick one of them
(say j) as baseline/reference

Hence, in this multinomial logit model, we deal with K-1 binary regressions where
we study the odds of each outcome with respect to the baseline

The baseline is often selected as the most common category, though it is possible
l’ to pick any other

)

Multinomial logistic regression

Hence, we can write, considering j as baseline,

)

Multinomial logistic regression

Hence, we can write, considering j as baseline,

Multinomial logistic regression

Hence, we can write, considering j as baseline,

Which means

Multinomial logistic regression

Hence, we can write, considering j as baseline,
p(y; = vI|X;)
1l

| p(yi =J1X;) = %o W)
Which means
(v; = v|X;) .
pp(; =J\‘X1) =t
l’ This is the relative risk: the odds of being in category v relative to the

) .{ reference group j

Z
(l

Multinomial logistic regression

K
Since 2. PUi=plx) =1
p=1

We can write

b

)

l (]

pPFj

b

)

Multinomial logistic regression

Since)
Zﬂ(yl‘ =P‘Xi) =1
p=1
We can wni '
write p(y; =J1x) + ZP()’,' =plx) =1
PFJ

p(y; = plX)
: — e<Xi9Wp>
p(y; =Jj1X;)

b

)

Since
K
W Z,p(yl:p\X-)—l
e can wri . :
1te
PO =] >
=J|X)+
; Py, =
Using no 4) N
W i =plx)
— f Xi’wp>
- p(y; =p|X) =p(y
;= Jj1x)e X"

p(y; =Jj1X;) B

b

)

Multinomial logistic regression

K

Since 2. PUi=plx) =1

p=1
We can write p(v: =Jj|X;) + Zp(y,- =p|x) =1

P#J
US]ng NOowW p(yl — p ‘ Xi) — e<Xz’9Wp> —> p(yl — p ‘ Xi) — p(yl :j‘Xl,)e<XiaWp>
p(yi =J X))
l’ We get

1
PO =Jj1x) =
l l <Xi’wp>
!A{; +3,,e

Multinomial logistic regression

The relative risk for the variable v with respect to the baseline j was

Multinomial logistic regression

The relative risk for the variable v with respect to the baseline j was

But since

Multinomial logistic regression

The relative risk for the variable v with respect to the baseline j was

But since

We get

F e (X;;W,)

Multinomial logistic regression

The relative risk for the variable v with respect to the baseline j was

p(yz =V ‘ Xz) _ e<Xi9Wv>
Py =J1X;)
But since
PO =J1x;) =
’ l (X;;W))
1 + Zp#]e P
We get

F e (X;;W,)

pO; = Vv|X;) =
l l <Xi9Wp>
.' L+ Zp#je
Which is equivalent to the softmax function where we set w; = 0

J

Multinomial logistic regression

Multinomial logistic regression

You might find references to the relative risk ratio (RRR) which is defined as

)

Multinomial logistic regression

You might find references to the relative risk ratio (RRR) which is defined as

= e <Xi_Xk’Wv>

)

Multinomial logistic regression

You might find references to the relative risk ratio (RRR) which is defined as
p(y; = Vv|X;)

RRR — p(yl =.] Xi) — e<Xi_Xk’Wv>
POy = V%)

p(y; = Jj1xp)

)

Multinomial logistic regression

You might find references to the relative risk ratio (RRR) which is defined as

p(y; =v|x)
RRR — Py =J1X) _ e(xi—xk,wv)
P = VvIX)
P =J1%p)
_ T — T
|f X: = (1o, .5 X0 ooy Xig) X, = (Lx,....,x,, — 1,...,x,)

b

)

Multinomial logistic regression

You might find references to the relative risk ratio (RRR) which is defined as

p(y; = Vv|X;)
RRR — PO =J1X) _ e(xi—xk,wv)
PO = VIXp)
PO =J1%p)
If = (1,x, . ! = (1,x. — 1)
X, il evvsXips vens Xig X, ity eees X — 1oy X
X — X = 0,0,....1,...,0)"
l’ Component m

)

Multinomial logistic regression

You might find references to the relative risk ratio (RRR) which is defined as

p(y; = Vv|X;)
RRR — PO =J1X) _ e(xi—xk,wv)
PO = VIXp)
PO =J1%p)
If = (1,x, . ! = (1,x. — 1)
X, il evvsXips vens Xig X, ity eees X — 1oy X
X — X = 0,0,....1,...,0)"
l’ Component m

!4 RRR — e(Xi_Xk9Wv> — ewvm

