MTH744

Midterm test and solutions

November 2023

MTH744U/P - DYNAMICAL SYSTEMS

MID-TERM TEST 2023-24 (1 hour; SEA 1.5 hours)
Programmable calculators not allowed.
You can submit your rough working as evidence of your methods, but it is not obligatory.
10.15am, Thursday Nov 9th, 2023.

Setter: D.K. Arrowsmith

Question 1 Identifying phase portraits

Which of the following ODEs on \mathbb{R} give a phase portrait which is qualitatively the same as the one illustrated below?

Figure 1: Phase portrait on \mathbb{R}.
(a) $\dot{x}=(4-x)^{2}(x+3)^{2}(x-2)(x+4) \quad[\quad]$
(b) $\dot{x}=-x(x-2)^{2}(x+3)^{2}(x-4) \quad[\quad]$
(c) $\dot{x}=(x+2)^{2}(x+3)\left(x^{2}-9\right)(x-4) \quad[$]
(d) None of above. []

Question $2 \quad$ Classification of a fixed point

The fixed point at $x=0$ of the $\operatorname{ODE} \dot{x}=x(x-\sinh (x))^{3}, x \in \mathbb{R}$, satisfies which of the following options
(a) a saddle node with instability for $x>0 \quad$ []
(b) a saddle node with instability for $x<0 \quad$ []
(c) unstable fixed point []
(e) stable fixed point []
(f) None of the above. []

Question $3 \quad$ Phase portraits on the circle

For which of the functions $g: \mathbb{S} \rightarrow \mathbb{R}$ (see the choices below) does the system

$$
\dot{\theta}=g(\theta)
$$

$\theta \in \mathbb{S}$ have exactly four fixed points with one unstable, one asymptotically stable, and two saddle-nodes.
(a) $g(\theta)=\sin (2 \theta) \quad[\quad]$
(b) $g(\theta)=\sin (\theta)(1-\sin (\theta)) \quad[\quad]$
(c) $g(\theta)=\sin (\theta)\left(1-\cos ^{2}(\theta)\right) \quad[$]
(d) None of the above.

Question 4 Fixed Point Sets and Bifurcations

Consider the system

$$
\dot{x}=x^{4}-r x^{3}-x^{2}+r^{2},
$$

where $x \in \mathbb{R}$ and r is a real parameter. The system has one line of fixed points in the $x r$-plane given by $x=r$. Find the complete set of fixed point curves in in the $x r$-plane and use that information to decide on the following statements as true or false:
(a) there are at most 3 bifurcation points
(b) there are no transcritical bifurcations
(c) there are no pitchfork bifurcations [
(d) there are no saddle-node bifurcations []
(e) None of the above. []

Question $5 \quad$ Finding Bifurcation Types

For the system

$$
\dot{x}=r x+x \frac{(1+r+x)}{\left(1+x^{2}\right)},
$$

where $x \in \mathrm{R}$ and r is a real parameter. Is there a bifurcation point of type (?) at the point (?) in the following choices?
(a) saddle node at $(x, r)=(0,0) ; \quad[\quad]$
(b) pitchfork at $(x, r)=\left(0, \frac{1}{2}\right) ; \quad$ []
(c) transcritical at $(x, r)=\left(0,-\frac{1}{2}\right) ; \quad$ []
(d) None of these []

Question $6 \quad$ Fixed points of planar linear systems

Describe the type of the fixed point at the origin $(x, y)=(0,0) \in \mathbb{R}^{2}$ for the linear system

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\mathbf{A}\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

when the matrix
(a) $\mathrm{A}=\left[\begin{array}{ll}1 & 6 \\ 3 & 7\end{array}\right]$
(b) $\mathrm{A}=\left[\begin{array}{cc}3 & -2 \\ 2 & 4\end{array}\right]$
(c) $\mathrm{A}=\left[\begin{array}{ll}-1 & -1 \\ -1 & -3\end{array}\right]$
(d) $\mathrm{A}=\left[\begin{array}{cc}0 & 0 \\ 1 & -2\end{array}\right]$.

Your answers should be chosen from:
saddle (SA); unstable node (UN); stable node (SN); unstable spiral (US); stable spiral (SS); unstable improper node(UIN); stable improper node (SIN); unstable (U); stable(ST); stable but not asymptotically stable (SNAS).

Q1 Phuse partrat has 5 disinct ponvis
(a) $\dot{x}=(4-x)^{2}(x+3)^{2}(x-2)(x+4)$

Fixed points at

$$
x=-4,-3,2,4 \quad\left(4, F P_{s}\right)
$$

(b) $x=0,2,-3,4 \quad$ ($4 f P_{5}$).
(c) $x=-2,-3,3,4$ ($4 F P s$).
(d) None of the above
otho obsenvations - needs 3 double roots. for the saddile nodes

Q2

$$
\begin{aligned}
& \text { Q2. } \begin{array}{l}
\dot{x}=x(x-\sinh (x))^{3} \\
\sinh (x)=x+\frac{x^{3}}{3!}+\cdots \\
=x+\frac{x^{3}}{3!} \cdots
\end{array} \\
& \dot{x}=x\left(-\frac{x^{3}}{3!}+\cdots\right)^{3}=-\frac{x^{0}}{(6)^{3}}+\text { h.o.t }
\end{aligned}
$$

$\therefore x=0$ fixed pt has local approx $\dot{x}=-x^{10} /(6)^{3}$
$x=0$
(b) saddle wode inth mstability for $x<0$.

(c)

$$
\begin{aligned}
f(\theta) & =\sin \theta\left(1-\cos ^{2} \theta\right) \\
& =\sin \theta(1-\cos \theta)(1+\cos (\theta))
\end{aligned}
$$

$$
\therefore \operatorname{sgn}(\sin \theta)=\operatorname{sgn}(f(\theta)
$$

oxcept for "added" zeroesat

$$
\theta=0, \theta=\pi!
$$

So no change from $\dot{\theta}=\sin \theta$! 1.e.

Choice (d) Nove of the cabove.

OR

$$
\begin{aligned}
& \dot{\theta}=\sin \theta\left(1-\cos ^{2} \theta\right) \\
&=\sin \theta\left(\sin ^{2} \theta\right) \\
&=\sin ^{3}(\theta) \\
& \operatorname{sgn}\left(\sin ^{3} \theta\right)=\operatorname{sgn}(\sin \theta)
\end{aligned}
$$

So. phase potriats of.

$$
\dot{\theta}=\sin \theta \text { and } \dot{\theta}=\sin ^{3}(\theta)
$$

are identical.
As are on \mathbb{R}

$$
\begin{array}{ll}
\dot{x}=x \quad \& \quad \dot{x}=x^{3} \\
\dot{x}=\sinh (x) & \dot{x}=\sinh ^{3}(x) \\
\dot{x}=f(x) \quad \& \quad \dot{x}=[f(x)]^{3}
\end{array}
$$

what abr

$$
\begin{aligned}
& \text { at alt } \\
& \dot{x}=f(x) \text { and } \dot{x}=[f(x)]^{2} \text { ? }
\end{aligned}
$$

Q4

$r=x$

$$
\dot{x}=x^{4}-r x^{3}-x^{2}+r^{2}
$$

$$
=(x-r) x^{3}-(x-r)(x+r)
$$

$$
=(x-r)\left(x^{3}-x-r\right)
$$

$$
r=x^{3}-x
$$

Fixed pt struture changes at A, B, C, D, E in the or plane for $r=$ constant. ACE potential Transcantial BD potential saddle-node
(a) there are $5 x$
(b) potentially $3 T B x$
(c) no pitchlow ψ
(d) potantially 2 SN x
(C) noreof the othes

QL

$$
\dot{x}=\frac{v(x, r)}{\sqrt{x+x(1+r+x) /\left(1+x^{2}\right)} .}
$$

Note $x=0$ is a fixed pl for all $r \in \mathbb{R}$
Expanding in powers of x :

$$
\begin{aligned}
& =r x+x(1+r+x)\left(1-x^{2}+\ldots\right. \\
& =r x+x+\sqrt{x}+x^{2}-x^{3}-x^{2} r-x^{4}+1 \\
& =(2 r+1) x+x^{2}+\cdots
\end{aligned}
$$

At $x=0$, there is a bifucatu $p r$ for $2 r+1=0$, Note $f_{x}^{\prime}(x, r) \mid=2 r+1$
Let $\mu=r+\frac{1}{2}$, then

$$
\dot{x}=2 \mu x+x^{2}-\frac{3}{2} x^{3}+\mu x^{3} .
$$

Transantical bifurcation at $(x, r)=\left(0,-\frac{1}{2}\right)$

$$
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}
$$

CHK "Binomial Exp

Q6 $\quad \underline{x}=\underline{A} \underline{x}, \underline{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$.
(a) $A=\left[\begin{array}{cc}1 & 6 \\ 3 & 7\end{array}\right] \quad \begin{array}{r}\text { Det }=7-18<0 \\ \lambda_{1} \lambda_{2} \text { opposite }\end{array}$ λ_{1}, λ_{2} oppóste sign
(b) $\frac{\text { seddle }}{} A=\left[\begin{array}{cc}3 & -2 \\ 2 & 4\end{array}\right] \frac{T}{\lambda}$ - unstable
(b) $A=\left[\begin{array}{cc}3 & -2 \\ 2 & 4\end{array}\right] \begin{aligned} & T_{r}=7 \quad \text { 㫙 }=16 \\ & \lambda_{1}, \lambda_{2}=(7 \pm \sqrt{49-64}) / 2\end{aligned}$ unstable spiral $=(7 \pm i \sqrt{15}) / 2$
(c) $A=\left[\begin{array}{cc}-1 & -1 \\ -1 & -3\end{array}\right] \begin{aligned} & \text { unstabde } \\ & \operatorname{Tr}=-4, \\ & \lambda_{1}, \lambda_{2}=\frac{-4 \pm \sqrt{8}}{2}\end{aligned}$
stable node - stable and ${ }^{2}$ AS
(d) $A=\left[\begin{array}{cc}0 & 0 \\ 1 & -2\end{array}\right] \quad \lambda_{1}=0, \lambda=-2$
stable fixed pount $=$ not As
Note on (d)
(d) $\left.\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 1 & -2\end{array}\right] \begin{array}{l}x \\ y\end{array}\right]$

$$
\dot{v}=0, \dot{y}=x-2 y
$$

Not asymptritically

