MTH744

Midterm test and solutions

November 2023

MTH744U/P - DYNAMICAL SYSTEMS

MID-TERM TEST 2023-24 (1 hour; SEA 1.5 hours)

Programmable calculators not allowed.

You can submit your rough working as evidence of your methods, but it is not obligatory.

10.15am, Thursday Nov 9th, 2023.

Setter: D.K. Arrowsmith

Question 1 Identifying phase portraits

Which of the following ODEs on \mathbb{R} give a phase portrait which is qualitatively the same as the one illustrated below?

Figure 1: Phase portrait on \mathbb{R} .

- (a) $\dot{x} = (4-x)^2(x+3)^2(x-2)(x+4)$ []
- (b) $\dot{x} = -x(x-2)^2(x+3)^2(x-4)$ []
- (c) $\dot{x} = (x+2)^2(x+3)(x^2-9)(x-4)$ []
- (d) None of above. []

Question 2 Classification of a fixed point

The fixed point at x = 0 of the ODE $\dot{x} = x(x - \sinh(x))^3$, $x \in \mathbb{R}$, satisfies which of the following options

(a) a saddle node with instability for x > 0 []

- (b) a saddle node with instability for x < 0 []
- (c) unstable fixed point []
- (e) stable fixed point []
- (f) None of the above.

Question 3 Phase portraits on the circle

For which of the functions $g: \mathbb{S} \to \mathbb{R}$ (see the choices below) does the system

$$\theta = g(\theta),$$

 $\theta \in \mathbb{S}$ have exactly four fixed points with one unstable, one asymptotically stable, and two saddle-nodes.

- (a) $g(\theta) = \sin(2\theta)$ []
- (b) $g(\theta) = \sin(\theta)(1 \sin(\theta))$ []
- (c) $g(\theta) = \sin(\theta)(1 \cos^2(\theta))$ []
- (d) None of the above.

Question 4 Fixed Point Sets and Bifurcations

Consider the system

$$\dot{x} = x^4 - rx^3 - x^2 + r^2,$$

where $x \in \mathbb{R}$ and r is a real parameter. The system has one line of fixed points in the *xr*-plane given by x = r. Find the complete set of fixed point curves in in the *xr*-plane and use that information to decide on the following statements as true or false:

- (a) there are at most 3 bifurcation points []
- (b) there are no transcritical bifurcations []
- (c) there are no pitchfork bifurcations []
- (d) there are no saddle-node bifurcations
- (e) None of the above. []

Question 5

Finding Bifurcation Types

For the system

$$\dot{x} = rx + x \frac{(1+r+x)}{(1+x^2)},$$

where $x \in \mathbb{R}$ and r is a real parameter. Is there a bifurcation point of type (?) at the point (?) in the following choices?

- (a) saddle node at (x, r) = (0, 0); []
- (b) pitchfork at $(x, r) = (0, \frac{1}{2});$ []
- (c) transcritical at $(x, r) = (0, -\frac{1}{2});$ []

[]

(d) None of these

Question 6 Fixed points of planar linear systems

Describe the type of the fixed point at the origin $(x, y) = (0, 0) \in \mathbb{R}^2$ for the linear system

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \end{bmatrix},$$

when the matrix

- (a) $A = \begin{bmatrix} 1 & 6 \\ 3 & 7 \end{bmatrix}$ []
- (b) $A = \begin{bmatrix} 3 & -2 \\ 2 & 4 \end{bmatrix}$ []
- (c) A= $\begin{bmatrix} -1 & -1 \\ -1 & -3 \end{bmatrix}$ []
- (d) A= $\begin{bmatrix} 0 & 0\\ 1 & -2 \end{bmatrix}$. []

Your answers should be chosen from:

saddle (SA); unstable node (UN); stable node (SN); unstable spiral (US); stable spiral (SS); unstable improper node(UIN); stable improper node (SIN); unstable (U); stable(ST); stable but not asymptotically stable (SNAS).

RI Phuse partrait hers 5 distanct pomb $(a) \quad \dot{x} = (4 - \chi)^2 (\chi + 3)^2 (\chi - 2) (\chi + 4)$ Fixed points at x = -4, -3, 2, 4 (4 FPs) (b) x = 0, 2, -3, 4 (4 fPs). (c) x = -2, -3, 3, 4 (4 FPs). (d) More of the above (Othor observations - needs 3 double roots. For the caddle nodes

 $\dot{x} = x(x - \sinh(x))^3$ Q2 $\sinh(x) = \alpha + \chi^{2} + \cdots$ $\left(\frac{-\alpha^3}{31}+...\right)^3$ -+ h.o.t. x = (613 $\therefore \mathbf{z} = 0$ fixed pt has approx $\mathbf{x} = -\mathbf{x}^{1} \frac{1}{6}^{2}$ local (b) seddle node inth instability for 2<0. $Q^{3}(a)f(0) = \sin 20$ 4 fps 2stable/ 2 unstable 4 FPS, but ng Gadde nodes (not sin s (b) f(0)= &in 0 (1-sin 0)) ogniny (3FPs) x

(c) $f(\theta) = \sin \theta (1 - \omega^2 \theta)$ $= \sin \Theta (1 - \cos \Theta) (1 + \cos(\Theta))$ So except for 0: 0 when = 0 Arr O except for Ale • Sqn(SinO) = Sqn(f(0) Oxcept pr 'added' Zenes at **, θ** = π Q = Dno change from $\theta = \sin \theta$ 50).C 0=Ð Choice (d) Noue q' rue choose.

 $\frac{\partial R}{\partial f} = \sin \theta \left(\left(-\cos^2 \Theta \right) \right)$ $= \sin \Theta \left(\sin^2 \Theta \right)$ $= 8m^{3}(\Theta)$ $Sgn(Sm^{3}\Theta) = Sgn(SmO)$ So phuse portraits of $\theta = \sin \theta$ and $\theta = \sin^3(\theta)$ an identical. As are on R $\dot{x} = x^{3}$ $\dot{x} = \sinh(x)$ $\dot{x} = x$ $\alpha = 4mh(x)$ $\varkappa = \left[f(\varkappa)\right]^{3}$ what alt an and $\bar{j}(x) = f(x)$ and $\bar{j}(x) = f(x)^2$.

Q4. $x = x^4 - yx^3 - x^2 + r^2$ $= (x - r)x^3 - (x - r)(x + r)$ $=(\alpha-r)(\alpha^{3}-\alpha-r)$ (FPs: $f = \chi^3 - \chi$ Fixed pt structure changes at A,B,C,D,E in the 21 plane for reconstant. ACE potential Transcritical BD potential coddle-node (a) there are 5 X (b) potentially 3 TB X (c) no pritch Tork 4 X (d) potentially 2 SN X none of the others (e)

Q5 $\dot{x} = \sqrt{x} + x(1+r+x)/(1+x^2)$ Note x=0 is a fixed pl far all relk Expanding in powers of re= $= \int x + x (1 + (1 + (1 + x)) (1 - x^{2} + ...))$ $= \int x + 3(1) x + x - 3 - x - x + 1$ ($= (2s+1)x + z^{2} + \cdots$ At x=0, there is a highwater pr for 2rrr = 0, Note $f_{x}(x,r) = 2rrr$ $\begin{array}{l} \text{fot } \mu = \Gamma + \frac{1}{2}, \text{then} \\ \text{is } = 2\mu n + n^2 - \frac{3}{2}n^3 + \mu n^3. \end{array} \end{array}$ Transcritical bijercation at $(x,r) = [0, -\frac{1}{z}]$ $\begin{array}{ccc} A \neq 0, C \neq 0 \\ B = 0 \\ T_{cons} & Bif. \end{array}$ CHK "Binomial Exp Formala !!

$$\begin{array}{c} (26) \quad \overset{\circ}{=} = A \times , \quad \overset{\circ}{=} = \begin{bmatrix} 7 \times \\ 9 \\ 1 \end{bmatrix} \\ (4) \quad A = \begin{bmatrix} 1 & 6 \\ -7 \\ 7 \\ 1 \end{bmatrix} \quad Det = 7 - 18 < 0 \\ \hline \lambda_1 & \lambda_2 & opposite sign \\ \hline \lambda_1 & \lambda_2 & (7 \pm \sqrt{49} - 64)/3 \\ \hline \mu & stable & Spiral \\ \hline \mu & stable & stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline stable & note \\ \hline -1 & -3 \\ \hline \lambda_1 & \lambda_2 & = -4 \pm 18 \\ \hline stable & note \\ \hline stable & note$$