QUEEN MARY, UNIVERSITY OF LONDON

MTH6102: Bayesian Statistical Methods

Solutions of exercise sheet 5

2023-2024

1. If the data follow a normal distribution with unknown mean μ and known standard deviation, and μ is assigned a normal prior distribution, show that the posterior mean for μ can be written as a weighted sum of the maximum likelihood estimate and the prior mean.

Solution

In the notation used in the lectures, the posterior distribution for μ is

$$\mu \sim N(\mu_1, \sigma_1^2)$$

where

$$\mu_1 = \left(\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}\right) / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)$$

So the posterior mean μ_1 is

$$\mu_1 = \frac{\mu_0}{\sigma_0^2} / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \right) + \frac{n\bar{y}}{\sigma^2} / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \right)$$
$$= (1 - w)\mu_0 + w\bar{y},$$

where

$$w = \frac{n}{\sigma^2} / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right) = \frac{1}{1 + \frac{\sigma^2}{n\sigma_0^2}}.$$

2. The column in the exercise sheet 5 dataset, labelled \mathbf{x} , contains the observed data be x_1, \ldots, x_n . Suppose that each data-point x_i is normally distributed, with unknown mean θ and standard deviation assumed to be equal to 1.

As a prior distribution for θ , we assign a normal distribution with mean 5 and standard deviation 10.

- (a) What is the posterior distribution for θ ?
- (b) What is the posterior mean for θ ?
- (c) What is the posterior median for θ ?
- (d) What is a 95% equal tail credible interval for θ ?

Solution:

(a) This is the problem with unknown mean, where the left-hand column below is the symbol used in the lectures and the right-hand column is the corresponding symbol or numerical value in this question:

$$\begin{array}{ccc}
\mu & \theta \\
\sigma & 1 \\
\mu_0 & 5 \\
\sigma_0 & 10
\end{array}$$

Let the sample mean be \bar{x} . The posterior distribution for θ is normal,

$$\theta \mid x \sim N(\mu_1, \sigma_1^2)$$

where

$$\mu_1 = \left(\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{x}}{\sigma^2}\right) / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)$$
$$\sigma_1^2 = 1 / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)$$

- (b) The posterior mean is μ_1 .
- (c) The posterior median is also μ_1 , since the normal distribution is symmetric about its mean.
- (d) For a 95% equal tail credible interval, we can either use the **qnorm** function in R (the quantile function of the normal distribution), after defining the posterior parameters mu1 and sigma1

Or we can remember that the 2.5% and 97.5% percentiles of a normal distribution $N(\mu_1, \sigma_1^2)$ are given by

$$\mu_1 - 1.96 \,\sigma_1, \; \mu_1 + 1.96 \,\sigma_1,$$

and so these points form the credible interval.

- 3. Let x_1, \ldots, x_n be iid Poisson (λ) , and let λ have a gamma (α, β) distribution.
 - (a) Show that gamma(α, β) is conjugate to the Poisson likelihood.
 - (b) Calculate the posterior mean and variance.
 - (c) Show how to find a 95% equal tail credible interval for λ ?
 - (d) Show how to find a 95% HPD credible interval for λ .

Solution

(a) Let $x = (x_1, \ldots, x_n)$. The posterior $p(\lambda \mid x)$ is

$$p(\lambda \mid x) \propto \text{likelihood} \times \text{prior}$$

$$= \frac{\beta^{\alpha} \lambda^{\alpha - 1} \exp(-\beta \lambda)}{\Gamma(\alpha)} \cdot \exp(-n\lambda) \lambda^{\sum y_i}$$

$$\propto \lambda^{\alpha + S - 1} \exp(-(\beta + n)\lambda).$$

Hence, the posterior distribution is $\operatorname{Gamma}(\alpha_1, \beta_1)$ with $\alpha_1 = \alpha + S$ and $\beta_1 = \beta + n$, where n is the sample size and $S = \sum y_i$ is the sum of the data.

(b) The posterior mean is

$$\frac{\alpha_1}{\beta_1} = \frac{\alpha + S}{\beta + n}.$$

The posterior variance is

$$\frac{\alpha_1}{\beta_1^2} = \frac{\alpha + S}{(\beta + n)^2}.$$

(c) If the posterior parameters are alpha1 and beta1, then the median and 95% credible interval are given by

qgamma(c(0.5, 0.025, 0.975), shape=alpha1, rate=beta1)

(d) We want to find (θ_L, θ_U) such that

$$\int_{\theta_L}^{\theta_U} p(\lambda \mid x) d\lambda = 0.95$$
$$p(\theta_L \mid x) = p(\theta_U \mid x).$$

where $p(\lambda \mid x) \sim \text{Gamma}(\alpha_1, \beta_1)$.

- 4. In an investigation into the size of the errors produced by a new measurement instrument, n measurements are taken of a standard sample of mass 1000 grams. The measurements (in grams), y_1, \ldots, y_n can be modelled as a random sample from a normal distribution with known mean $\mu = 1000$ and unknown precision τ (reciprocal of the variance). Assume the prior gamma(α , β) distribution on τ , where $\alpha = 5$ and $\beta = 0.05$
 - (a) Six measurements are taken and the data is

Given these measurements, what is the posterior distribution of τ ?

- (b) Use R to find the posterior median and a 95% equal tail credible interval for τ .
- (c) Can you find the posterior median for $\sigma = 1/\sqrt{\tau}$? Can you find a 95% credible interval for σ ? [Hint: these do not need the derivation of the posterior distribution for σ , or any extensive calculations.]

Solution:

(a) The posterior distribution for τ is

$$\tau \sim \text{Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (y_i - \mu)^2}{2}\right)$$

Using the measurements, the posterior distribution for τ is Gamma(α_1, β_1) with

$$\alpha_1 = 5 + 6/2 = 8$$
, $\beta_1 = 0.05 + 0.0995/2 = 0.09975$

(b) Using the qgamma command gives 76.9 for the posterior median and (34.6, 144.6) for the 95% credible interval.

(c) Now put $\sigma = 1/\sqrt{\tau}$. For any 0 < c < 1 and $t \ge 0$

$$P(\tau \le t) = c \implies P(1/\sqrt{\tau} \ge 1/\sqrt{t}) = c$$

In particular, if τ_M is the posterior median for τ ,

$$0.5 = P(\tau \le \tau_M) = P(\sigma \ge 1/\sqrt{\tau_M})$$

$$P(\sigma \le 1/\sqrt{\tau_M}) = 0.5$$

So $1/\sqrt{\tau_M}$ is the posterior median for σ .

If (τ_L, τ_U) is an equal tail 95% credible interval for τ ,

$$P(\tau \le \tau_L) = 0.025 \text{ and } P(\sigma \ge 1/\sqrt{\tau_L}) = 0.025$$

$$P(\tau \le \tau_U) = 0.975 \text{ and } P(\sigma \ge 1/\sqrt{\tau_U}) = 0.975$$

So

$$P(\sigma \le 1/\sqrt{\tau_U}) = 0.025, \ P(\sigma \ge 1/\sqrt{\tau_L}) = 0.025$$

Hence $(1/\sqrt{\tau_U}, 1/\sqrt{\tau_L})$ is an equal tail 95% credible interval for σ .