QUEEN MARY, UNIVERSITY OF LONDON MTH6102: Bayesian Statistical Methods

Solutions of exercise sheet 5
2023-2024

1. If the data follow a normal distribution with unknown mean μ and known standard deviation, and μ is assigned a normal prior distribution, show that the posterior mean for μ can be written as a weighted sum of the maximum likelihood estimate and the prior mean.

Solution

In the notation used in the lectures, the posterior distribution for μ is

$$
\mu \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)
$$

where

$$
\mu_{1}=\left(\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{n \bar{y}}{\sigma^{2}}\right) /\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)
$$

So the posterior mean μ_{1} is

$$
\begin{aligned}
\mu_{1} & =\frac{\mu_{0}}{\sigma_{0}^{2}} /\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)+\frac{n \bar{y}}{\sigma^{2}} /\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right) \\
& =(1-w) \mu_{0}+w \bar{y}
\end{aligned}
$$

where

$$
w=\frac{n}{\sigma^{2}} /\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)=\frac{1}{1+\frac{\sigma^{2}}{n \sigma_{0}^{2}}} .
$$

2. The column in the exercise sheet 5 dataset, labelled x , contains the observed data be x_{1}, \ldots, x_{n}. Suppose that each data-point x_{i} is normally distributed, with unknown mean θ and standard deviation assumed to be equal to 1 .
As a prior distribution for θ, we assign a normal distribution with mean 5 and standard deviation 10 .
(a) What is the posterior distribution for θ ?
(b) What is the posterior mean for θ ?
(c) What is the posterior median for θ ?
(d) What is a 95% equal tail credible interval for θ ?

Solution:

(a) This is the problem with unknown mean, where the left-hand column below is the symbol used in the lectures and the right-hand column is the corresponding symbol or numerical value in this question:

μ	θ
σ	1
μ_{0}	5
σ_{0}	10

Let the sample mean be \bar{x}. The posterior distribution for θ is normal,

$$
\theta \mid x \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)
$$

where

$$
\begin{gathered}
\mu_{1}=\left(\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{n \bar{x}}{\sigma^{2}}\right) /\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right) \\
\sigma_{1}^{2}=1 /\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)
\end{gathered}
$$

(b) The posterior mean is μ_{1}.
(c) The posterior median is also μ_{1}, since the normal distribution is symmetric about its mean.
(d) For a 95% equal tail credible interval, we can either use the qnorm function in R (the quantile function of the normal distribution), after defining the posterior parameters mu1 and sigma1

```
qnorm(c(0.025, 0.975), mean=mu1, sd=sigma1)
```

Or we can remember that the 2.5% and 97.5% percentiles of a normal distribution $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ are given by

$$
\mu_{1}-1.96 \sigma_{1}, \mu_{1}+1.96 \sigma_{1}
$$

and so these points form the credible interval.
3. Let x_{1}, \ldots, x_{n} be iid Poisson (λ), and let λ have a gamma (α, β) distribution.
(a) Show that $\operatorname{gamma}(\alpha, \beta)$ is conjugate to the Poisson likelihood.
(b) Calculate the posterior mean and variance.
(c) Show how to find a 95% equal tail credible interval for λ ?
(d) Show how to find a 95% HPD credible interval for λ.

Solution

(a) Let $x=\left(x_{1}, \ldots, x_{n}\right)$. The posterior $p(\lambda \mid x)$ is

$$
\begin{aligned}
p(\lambda \mid x) & \propto \text { likelihood } \times \text { prior } \\
& =\frac{\beta^{\alpha} \lambda^{\alpha-1} \exp (-\beta \lambda)}{\Gamma(\alpha)} \cdot \exp (-n \lambda) \lambda^{\sum y_{i}} \\
& \propto \lambda^{\alpha+S-1} \exp (-(\beta+n) \lambda) .
\end{aligned}
$$

Hence, the posterior distribution is $\operatorname{Gamma}\left(\alpha_{1}, \beta_{1}\right)$ with $\alpha_{1}=\alpha+S$ and $\beta_{1}=\beta+n$, where n is the sample size and $S=\sum y_{i}$ is the sum of the data.
(b) The posterior mean is

$$
\frac{\alpha_{1}}{\beta_{1}}=\frac{\alpha+S}{\beta+n}
$$

The posterior variance is

$$
\frac{\alpha_{1}}{\beta_{1}^{2}}=\frac{\alpha+S}{(\beta+n)^{2}}
$$

(c) If the posterior parameters are alpha1 and beta1, then the median and 95% credible interval are given by

$$
\text { qgamma }(c(0.5,0.025,0.975), \text { shape=alpha1, rate=beta1) }
$$

(d) We want to find $\left(\theta_{L}, \theta_{U}\right)$ such that

$$
\begin{gathered}
\int_{\theta_{L}}^{\theta_{U}} p(\lambda \mid x) d \lambda=0.95 \\
p\left(\theta_{L} \mid x\right)=p\left(\theta_{U} \mid x\right)
\end{gathered}
$$

where $p(\lambda \mid x) \sim \operatorname{Gamma}\left(\alpha_{1}, \beta_{1}\right)$.
4. In an investigation into the size of the errors produced by a new measurement instrument, n measurements are taken of a standard sample of mass 1000 grams. The measurements (in grams), y_{1}, \ldots, y_{n} can be modelled as a random sample from a normal distribution with known mean $\mu=1000$ and unknown precision τ (reciprocal of the variance). Assume the prior gamma (α, β) distribution on τ, where $\alpha=5$ and $\beta=0.05$
(a) Six measurements are taken and the data is

$$
1000.11,999.96,999.84,999.89,999.80,1000.09
$$

Given these measurements, what is the posterior distribution of τ ?
(b) Use R to find the posterior median and a 95% equal tail credible interval for τ.
(c) Can you find the posterior median for $\sigma=1 / \sqrt{\tau}$? Can you find a 95% credible interval for σ ? [Hint: these do not need the derivation of the posterior distribution for σ, or any extensive calculations.]

Solution:

(a) The posterior distribution for τ is

$$
\tau \sim \operatorname{Gamma}\left(\alpha+\frac{n}{2}, \beta+\frac{\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}}{2}\right)
$$

Using the measurements, the posterior distribution for τ is $\operatorname{Gamma}\left(\alpha_{1}, \beta_{1}\right)$ with

$$
\alpha_{1}=5+6 / 2=8, \quad \beta_{1}=0.05+0.0995 / 2=0.09975
$$

(b) Using the qgamma command gives 76.9 for the posterior median and (34.6, 144.6) for the 95% credible interval.
(c) Now put $\sigma=1 / \sqrt{\tau}$.

For any $0<c<1$ and $t \geq 0$

$$
P(\tau \leq t)=c \Longrightarrow P(1 / \sqrt{\tau} \geq 1 / \sqrt{t})=c
$$

In particular, if τ_{M} is the posterior median for τ,

$$
\begin{gathered}
0.5=P\left(\tau \leq \tau_{M}\right)=P\left(\sigma \geq 1 / \sqrt{\tau_{M}}\right) \\
P\left(\sigma \leq 1 / \sqrt{\tau_{M}}\right)=0.5
\end{gathered}
$$

So $1 / \sqrt{\tau_{M}}$ is the posterior median for σ. If (τ_{L}, τ_{U}) is an equal tail 95% credible interval for τ,

$$
\begin{aligned}
& P\left(\tau \leq \tau_{L}\right)=0.025 \text { and } P\left(\sigma \geq 1 / \sqrt{\tau_{L}}\right)=0.025 \\
& P\left(\tau \leq \tau_{U}\right)=0.975 \text { and } P\left(\sigma \geq 1 / \sqrt{\tau_{U}}\right)=0.975
\end{aligned}
$$

So

$$
P\left(\sigma \leq 1 / \sqrt{\tau_{U}}\right)=0.025, P\left(\sigma \geq 1 / \sqrt{\tau_{L}}\right)=0.025
$$

Hence $\left(1 / \sqrt{\tau_{U}}, 1 / \sqrt{\tau_{L}}\right)$ is an equal tail 95% credible interval for σ.

