MTH6107 Chaos \& Fractals

Exercises 4

EXAM QUESTION: the questions below are based on the various parts of Question 2 on the January 2023 exam paper

Suppose $a \geq 2$, and that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x^{2}-a$.
Exercise 1. Determine all fixed points of f, and determine whether each fixed point is attracting or repelling, taking care to justify your answer.

Exercise 2. Determine all 2-cycles for f, and determine whether each 2-cycle is attracting or repelling, taking care to justify your answer.

Exercise 3. Give one example of an eventually fixed point that is not itself a fixed point, and one example of an eventually periodic point of least period 2 that is not itself a periodic point.

Exercise 4. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x)=x^{2}+a$, determine whether there is a topological conjugacy from f to g, taking care to justify your answer.

Exercise 5. If $F: \mathbb{R} \rightarrow \mathbb{R}$ and and $G: \mathbb{R} \rightarrow \mathbb{R}$ are defined by $F(x)=x-a$ and $G(x)=x+a$, determine whether there is a topological conjugacy from F to G, taking care to justify your answer.

