PROBLEM SET 10 FOR MTH 6151

1. Use the Fourier-Poisson formula to compute the solution to the problem

$$
\begin{aligned}
& U_{t}=\varkappa U_{x x}, \quad x \in \mathbb{R}, \quad t>0 \\
& U(x, 0)=1
\end{aligned}
$$

Interpret the result you obtain. Is this surprising?
2. Use the Fourier-Poisson formula to find the limit as $t \rightarrow \infty$ of the solution to the problem

$$
\begin{aligned}
& U_{t}=\varkappa U_{x x}, \quad x \in \mathbb{R}, \quad t>0, \\
& U(x, 0)=\left\{\begin{array}{cc}
1 & -L<x<L \\
0 & x<-L, \quad x>L
\end{array} .\right.
\end{aligned}
$$

Plot the solutions at several instants of time and describe in qualitative terms the behaviour of the solution to as $t \rightarrow \infty$. What is $\lim _{t \rightarrow \infty} U(x, t)$?
3. Use the Fourier-Poisson formula to find the limit as $t \rightarrow \infty$ of the solution to the problem

$$
\begin{aligned}
& U_{t}=\varkappa U_{x x}, \quad x \in \mathbb{R}, \quad t>0 \\
& U(x, 0)= \begin{cases}3 & x<0 \\
1 & x>0\end{cases}
\end{aligned}
$$

Plot the solutions at several instants of time and describe in qualitative terms the behaviour of the solution to as $t \rightarrow \infty$. What is $\lim _{t \rightarrow \infty} U(x, t)$?
4. Use the Fourier-Poisson formula to compute the solution to the problem

$$
\begin{aligned}
& U_{t}=\varkappa U_{x x}, \quad x \in \mathbb{R}, \quad t>0 \\
& U(x, 0)=e^{3 x}
\end{aligned}
$$

5. Use the Fourier-Poisson formula to compute the solution to the problem

$$
\begin{aligned}
& U_{t}=\varkappa U_{x x}, \quad x \in \mathbb{R}, \quad t>0, \\
& U(x, 0)=\left\{\begin{array}{cl}
0 & x<0 \\
e^{-x} & x>0
\end{array}\right.
\end{aligned}
$$

What happens as $t \rightarrow \infty$.
6. Use even extensions to find the solution to the problem on the half-line with Neumann boundary conditions

$$
\begin{aligned}
& U_{t}=\varkappa U_{x x}, \quad x>0, \quad t>0, \\
& U(x, 0)=f(x) \\
& U_{x}(0, t)=0
\end{aligned}
$$

7. Consider the solution

$$
U(x, t)=x^{2}+2 \varkappa t
$$

of the heat equation. Find the location of its maximum and minimum in the rectangle

$$
\{0 \leq x \leq 1,0 \leq t \leq T\}
$$

