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Similar to regression, relates input variables {x;};_, to output
variables {y;};_, , i.e.

y. = f(X;) Vie{l,...,s}
Key-difference in classification:

Yy can only take on discrete values!
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Example: ye {-1,0,1}  with an example vector
LJ y: (09_ 19_ I,I,O)T fOI’ S:5
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Binary classification

When y can only take on two values, the classification is called
y€e {(C, G} C,,C, are called class labels

Often the class labels are associated with numerical values, e.g.

ye{—-L1} or y €10,1}°

b

Note that even if the class labels take on nhumerical values, there is
typically no ordering implied between the two classes




Binary classification

Examples:

image source



https://www.flickr.com/photos/geekshots/2232636589

Binary classification

Examples: Surviving the titanic disaster

Either you have survived or not
survived the sinking of the Titanic
(assuming you were a passenger on the
Titanic)

©Wikimedia commons



https://gallery.azure.ai/Experiment/01b2765fa75147ce99679e18482d280f

Binary classification

©Evening Standard
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Binary classification

Examples: Train delays

Often formulated and treated as a
regression problem

Can also be considered a binary
classification problem:

C, train delay < 30 minutes (no refund)
C, train delay > 30 minutes (refund)




Binary classification

Examples: credit default

+ = individual who defaulted on their credit
.+ +« . | card payments
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Binary classification

Examples: Targeted marketing

Classify customers as likely buyers vs unlikely buyers of product X

Hey! 020
You're old! w

BUY THIS ‘ )

avt T um ¥

Image source



https://www.fish-marketing.com/making-sure-targeted-marketing-doesnt-miss-mark/

Binary classification

Examples: Targeted marketing

Classify customers as likely buyers vs unlikely buyers of product X

Be aware of ethical consequences, e.g.

Hey| ) voter targeting
You're old! ‘

BUY THIS

Image source

avt b um ¥

Gl?&lllr%lian


https://www.fish-marketing.com/making-sure-targeted-marketing-doesnt-miss-mark/

Multi-class classification

In multi-class classification, y can take on more than two values, i.e.

ye{Cy, Ciy...., Cx_1}°

for the K class labels G, ..., Cy_,
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Multi-class classification

In multi-class classification, y can take on more than two values, i.e.

ye{Cy, Ciy...., Cx_1}°
for the K class labels G, ..., Cy_,

Again, there is in general no ordering amongst the classes
but often we will use numerical values as class labels, e.g.

b

!4 ye {0,1,....K—-1}°




Multi-class classification

Example: classification of hand-written digits

DECOQERNEELE
NENODEGASRNER
SENEAEERSDNEES
NESNHNNSREN
NS EE QS S
O~ o iR S ) —Jirfs
SN E RSN
NEAUESESESR
[ =S E R E QR R
ENEPNEGENENN

MNIST database

:
)



http://yann.lecun.com/exdb/mnist/

Multi-class classification

Example: classification of hand-written digits

DECSQEROERSE
NENODEGASRNER
SENEAEERSDNEES
NESNHNNSREN
NS EE QS S
O~ o iR S ) —Jirfs
SN E RSN
NEAUESESESR
[ =S E R E QR R
ENEPNEGENENN

MNIST database

Decide whether an image of a hand-
0,1,2,3,4,5,6,7,8 or 9

written digit belongs to class

p
)



http://yann.lecun.com/exdb/mnist/
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In order to classify, we need a

A classifier divides the input space into a collection of
regions belonging to each class

The boundaries of these regions are called decision boundaries
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2 ' We distinguish between linear and nonlinear classifiers




What is a classifier?

from Elements of Statistical Learning
by Hastie, Tibshirani and Friedman
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are interested in applying the predictor to new data
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What is the aim of classification?

Classification itself: we are constructing a predictor based on a training set and
are interested in applying the predictor to new data

Example: Credit card company wants to predict if a customer is
likely to default or not

Understanding the

‘cause’ of something: we are interested in the interpretation of the prediction

l’ Example: Disease prediction. We do not only want to know if

2 ( someone is at risk, but also why someone is at risk

For the second task it is often important to have ‘simple’ models
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What is the aim of classification?
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Curse of dimensionality

Claim 1) “Generalising correctly becomes exponentially harder as the
dimensionality grows because fixed-size training sets cover a dwindling
fraction of the input space.”
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Curse of dimensionality

Imagine all points lie in d-dimensional unit cube [0,1]¢

Unit Cube
\ Consider sub-cube [a,a + r]¢ c [0,1]¢ with

<> 0<a and a+r<1
1
— What fraction of the total volume does this

cube cover?
Answer: r¢
> Hence, in expectation a fraction a = r? of the
1 total data lies in this cube
a=1% a=1%
= ra~04 = ~ (.63
d=5 d=10 '
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Curse of dimensionality

Imagine all points lie in d-dimensional unit cube [0,1]¢

Unit Cube
\ Consider sub-cube [a,a + r]¢ c [0,1]¢ with

<> 0<a and a+r<1
1
— What fraction of the total volume does this

cube cover?
Answer: r¢
> Hence, in expectation a fraction a = r? of the
1 total data lies in this cube
a=10% = r~ (0.8

d=10




Curse of dimensionality
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the dimensionality increases, the choice of nearest neighbour becomes
effectively random.”

)




Curse of dimensionality

Claim 2) In high-dimension, data-points are far from each other. Consequently, “as
the dimensionality increases, the choice of nearest neighbour becomes
effectively random.”

Consider s data points uniformly distributed in the cube [0,1]¢
and a nearest neighbour estimate at point (1/2,1/2,...,1/2)

.

)




Curse of dimensionality

Claim 2) In high-dimension, data-points are far from each other. Consequently, “as
the dimensionality increases, the choice of nearest neighbour becomes
effectively random.”

Consider s data points uniformly distributed in the cube [0,1]¢
and a nearest neighbour estimate at point (1/2,1/2,...,1/2)

For our sub-cube [(1 —r)/2,(1 +r)/2]9 C [0,1]¢ with 0 <r<1,

what is the chance that a random sample is in [0,1]¢ but not
l’ in the sub-cube?

)




Curse of dimensionality

Claim 2) In high-dimension, data-points are far from each other. Consequently, “as
the dimensionality increases, the choice of nearest neighbour becomes
effectively random.”

Consider s data points uniformly distributed in the cube [0,1]¢
and a nearest neighbour estimate at point (1/2,1/2,...,1/2)

For our sub-cube [(1 —r)/2,(1 +r)/2]9 C [0,1]¢ with 0 <r<1,

what is the chance that a random sample is in [0,1]¢ but not
l’ in the sub-cube?

2’5{ -




Curse of dimensionality

Claim 2) In high-dimension, data-points are far from each other. Consequently, “as
the dimensionality increases, the choice of nearest neighbour becomes
effectively random.”

Consider s data points uniformly distributed in the cube [0,1]¢
and a nearest neighbour estimate at point (1/2,1/2,...,1/2)

For our sub-cube [(1 —r)/2,(1 +r)/2]9 C [0,1]¢ with 0 <r<1,

what is the chance that all s i.i.d. random samples are in [0,1]¢
l’ but not in the sub-cube?




Curse of dimensionality

Claim 2) In high-dimension, data-points are far from each other. Consequently, “as
the dimensionality increases, the choice of nearest neighbour becomes
effectively random.”

Consider s data points uniformly distributed in the cube [0,1]¢
and a nearest neighbour estimate at point (1/2,1/2,...,1/2)

For our sub-cube [(1 —r)/2,(1 +r)/2]9 C [0,1]¢ with 0 <r<1,

what is the chance that all s i.i.d. random samples are in [0,1]¢
l’ but not in the sub-cube?

f (1= )’
How to choose r such that this probability is 1/2?




Curse of dimensionality

Claim 2) In high-dimension, data-points are far from each other. Consequently, “as
the dimensionality increases, the choice of nearest neighbour becomes
effectively random.”

Consider s data points uniformly distributed in the cube [0,1]¢
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Curse of dimensionality

Claim 2) In high-dimension, data-points are far from each other. Consequently, “as
the dimensionality increases, the choice of nearest neighbour becomes
effectively random.”

Consider s data points uniformly distributed in the cube [0,1]¢

and a nearest neighbour estimate at point (1/2,1/2,...,1/2)

d=10
r= \d 1 —4 l Example: = r~ 0.52

2 s = 500




Nearest neighbour classification

Linear Regression of 0/1 Response

L

FIGURE 2.1. A classification example wn two di-
mensions. The classes are coded as a binary variable
( = 0, = 1), and then fit by linear re-
gression. The line 1s the deciston boundary defined by
:ETB = 0.5. The orange shaded region denotes that part

of input space classified as , while the blue region
15 classified as
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Nearest neighbour classification

Suppose {(x;,y,)}}_, are points sampled from the distribution &

For a new input x we determine the corresponding label y
by looking at the K points in the training set that are “nearest” to x:

ply=c|x,2,K) =% Z i(y; = ¢)

IENK(X,D) 1 if z1is true
l’ with  1(2) := { )

0 if zis false
!ﬁ{ Subsequently we set f(x) = argmax p(y = c|x, D, K)
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Kevin Murphy. Machine Learning
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Example:
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Nearest neighbour classification

Example:

Ng(x,2) = indices of K nearest points to x in &
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Nearest neighbour classification

Example:

Ne(x, D) = indices of K nearest points to x in &
O p(y=1|x,D,K =3) =2/3
| @fo p(y =0|x;,2,K=3)=1/3
| O = Jox) =1
| ‘& o p(y=1[x,2,K=3)=0
| | 0 o p(y=0[|x,2,K=3)=1

Kevin Murphy. Machine Learning




Nearest neighbour classification

Example:

Ne(x, D) = indices of K nearest points to x in &
O p(y=1|x,D,K =3) =2/3
| @fo p(y =0|x;,2,K=3)=1/3
| O = Jox) =1
| ‘& o p(y=1[x,2,K=3)=0
| | 0 o p(y=0[|x,2,K=3)=1

= fx,) =0

Kevin Murphy. Machine Learning




Nearest neighbour classification
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Nearest neighbour classification

: . 15-Nearest Neighbor Classifier
1-Nearest Neighbor Classifier

(I IH

J
FIGURE 2.3. The same classification example in two FIGURE 2‘2°. Th? same classification example in two
dimensions as in Figure 2.1. The classes are coded as dimensions as in Figure 2.1. The classes are coded as
a binary variable ( — 0, — 1), and then a binary variable ( — 0, = 1) and then fit
> predicted by 1-nearest-neighbor classification. by 15-nearest-neighbor averaging as in (2.8). The pre-

dicted class 1s hence chosen by majority vote amongst
the 15-nearest neighbors.



Classification as a special case of regression

Solve . 1 ZS:‘ ) ST 0 for class label C,
olve = 4arg min — . — V. — ;=
EREAEEEY 2s = Sl w) =i+ 2 v o7 1 for class label C,
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Classification as a special case of regression

ve 1 . 1 ¢ LI ~J 0 for class label C,
>olve w = argmin 2_521 6 w) = ilm ST e TOT =9 1 for class Label C,

Then it is natural to decide

1
flx,w) < 5 =  The predicted output is in class with label C,
1
l' Jx, w) > 5 =  The predicted output is in class with label G,

!.{ Let's look at an example, shall we?




Classification as a special case of regression

Example: credit default

+ = individual who defaulted on their credit
- card payments

60000
I
+
_l_
_I_
ot
+ +
_I_

: 0 = individual who did not default on their
. credit card payments

Income
40000
I
e
._|_
Al
_|_
e
#ﬁr
T
_|_

20000
I
+
e
%
S
oy
&
i _lJ_-I_
0
+ T
_|_
_I_

0 500 1000 1500 2000 2500

Balance _y :
from Elements of Statistical Learning

by Hastie, Tibshirani and Friedman




Classification as a special case of regression

Example: credit default

- It seems that the balance is the dominant
- SN contributing factor towards predicting a
i default
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Classification as a special case of regression

Example: credit default

N It seems that the balance is the dominant
contributing factor towards predicting a
B+ default
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Income

? ﬁt%ﬂ%+ .|  We therefore ignore the income for now and
: + focus on the balance
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Classification as a special case of regression

Example: credit default ,
Model assumption

f(x, Wo, Wl) —_ WO + Wl.x
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Classification as a special case of regression

Example: credit default ,
Model assumption

f(x, Wo, Wl) —_ WO + Wl.x
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Classification as a special case of regression

Example: credit default ,
Model assumption

; Jx, wy, wy) = wy + wix
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Classification as a special case of regression

Regression outcome is
as follows:

00 02 04 06 08 1.0

Probability of Default
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Classification as a special case of regression

Regression outcome is S S
as follows: =
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Classification as a special case of regression

Regression outcome is O e ————
as follows: =
3 ° (x;, w) > l
o T 2
© o
B [eee———————————
That didn’t go according 5 ° o
to plan. What went wrong? 2 « | flx,w) < 5
h ik
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Example: if we add a few points with y = 1 and very high balance, the line will
be shifted/tilted, although only few points have changed.
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Classification as a special case of regression

‘Position’ of line will crucially depend

e on how many points are in each class
e and where these points lie

Example: if we add a few points with y = 1 and very high balance, the line will
be shifted/tilted, although only few points have changed.

l’ This is not a desirable property!

! .{ Why does this happen?
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Classification as a special case of regression

We would like the fraction of misclassified cases to be small

But: MSE is very loosely related to this objective!

Example: MSE treats positive and negative deviations from class label equally

But only one can lead to misclassification

l’ Small MSE = small classification error

4 But the opposite is not necessarily true!
lD MSE is not a good metric for these types of problems!




